
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137043293
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137043293
https://plusone.google.com/share?url=http://www.informit.com/title/9780137043293
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137043293
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137043293/Free-Sample-Chapter

Praise for Essential Scrum

“Agile coaches, you’re gonna be happy with this book. Kenny Rubin has created
an indispensable resource for us. Do you have a manager who just doesn’t ‘get it’?
Hand them this book and ask them to flip to Chapter 3 for a complete explanation
of how Scrum is less risky than plan-driven management. It’s written just for them—
in management-speak. Want to help the team come to a common understanding of
Scrum? The visual icon language used throughout this book will help you help them.
These are just two ways this book can aid you to coach Scrum teams. Use it well.”

— Lyssa Adkins, Coach of Agile Coaches, Agile Coaching Institute; author,
Coaching Agile Teams

“One of the best, most comprehensive descriptions of the core Scrum framework
out there! Essential Scrum is for anyone—new to or experienced with Scrum—who’s
interested in the most important aspects of the process. Kenny does an excellent job
of distilling the key tenets of the Scrum framework into a simple format with com-
pelling visuals. As a Scrum coach for many teams, I continually reference the mate-
rial for new ways to help teams that are learning and practicing the framework. I’ve
seen Scrum continually misinterpreted and poorly implemented by big companies
and tool vendors for more than ten years. Reading this book will help you get back to
the basics and focus on what’s important.”

— Joe Balistrieri, Process Development Manager, Rockwell Automation

“Corporate IT leadership, which has been slow to embrace agile methods, would ben-
efit immensely from giving a copy of this book to all of their project and delivery
managers. Kenny Rubin has laid out in this book all the pragmatic business case and
process materials needed for any corporate IT shop to successfully implement Scrum.”

— John F. Bauer III, veteran of technical solution delivery in large corporate IT shops

“Kenny’s extensive experience as a consultant, trainer, and past managing director
of the Scrum Alliance is evident in this book. Along with providing the basics and
introduction to Scrum, this book addresses the questions of masses—what happens
to project managers? Essential Scrum helps us understand the big picture and guides
how organization leaders can support and be involved with their Scrum teams for
successful agile transformations.”

— Sameer S. Bendre, CSM, PMP, Senior Consultant, 3i Infotech Inc.

“If you’re new to agile development or to Scrum, this book will give you a flying start.
The examples and descriptions are clear and vivid, and you’ll often find yourself ask-
ing a question just before the book addresses that very topic.”

— Johannes Brodwall, Principal Solution Architect, Steria Norway

“Kenny’s well-structured explanations have a clarity to them that echoes the sensi-
bilities of Smalltalk—the development environment with which he worked for years
and from which both Scrum and Extreme Programming were born. This book pulls
together a thorough set of agile management principles that really hit the mark and
will no doubt guide you toward a more effective agile approach.”

— Rowan Bunning, Founder, Scrum WithStyle

 “There are lots of books on Scrum these days, but this book takes a new angle: a
reality check for software practitioners. Kenny uses real-world examples and clear
illustrations to show what makes a solid foundation for successful agile development.
Readers will understand the value of building quality in, and the reality that we can’t
get everything right up front; we must work incrementally and learn as we go. It
might have ‘Scrum’ in the title, but the book leverages effective practices from the
larger agile universe to help managers and their teams succeed.”

— Lisa Crispin, coauthor, Agile Testing

“Kenny Rubin managed to write the book that I want everyone associated with
Scrum development to read! He covers everything you’ll need to know about Scrum
and more!”

— Martine Devos, European Scrum Pioneer and Certified Scrum Trainer

“I’ve reviewed a number of agile books in the past few years, so the question of ‘Do
we really need another one?’ always comes to my mind. In the case of Kenny’s book,
I very much believe the answer is ‘yes.’ Getting the benefit of different, experienced
perspectives on commonly encountered and needed material is valuable. Kenny has
one of those valuable perspectives. One unique aspect of the book is an interesting
‘iconography’—a new icon language for Scrum and agile that Kenny has created. I
believe you’ll find value-added material in this book to expand your ideas for how
Scrum can be applied.”

— Scott Duncan, Agile/Scrum coach and trainer

“Anyone who has had Scrum training or has been part of a Scrum team will find
Essential Scrum to be a great follow-up read. It dives into the details of how to become
more agile through implementing Scrum processes, and it explains exactly how to
break down complex projects into manageable initiatives (or ‘sprints’). Kenny Rubin
provides a wealth of relevant case studies on what worked—or what didn’t—in a

variety of organizations. The simple layout and businesslike graphics make it easy to
scan quickly and find specific topics. Any organization that is seeking to evolve from
a traditional waterfall approach toward a more agile methodology will find Essential
Scrum a definitive guidebook for the journey.”

— Julia Frazier, product manager

“Developing software is hard. Adopting a new way of working while in a project is
even harder. This book offers a bypass of many of the pitfalls and will accelerate a
team’s ability to produce business value and become successful with Scrum. I wish I
had this kind of book when I started using Scrum.”

— Geir Hedemark, Development Manager, Basefarm AS

“I am convinced that Essential Scrum will become the foundation reference for the
next generation of Scrum practitioners. Not only is it the most comprehensive intro-
duction to Scrum available today, but it is also extremely well written and easy on the
eye with its fantastic new visual Scrum language. If that isn’t enough, Kenny shares a
range of his valuable personal insights and experiences that we can all certainly learn
from.”

— Ilan Goldstein, Agile Solutions Manager, Reed Elsevier

“Scrum is elegantly simple, yet deceptively complex. In Essential Scrum, Kenny Rubin
provides us with a step-by-step guide to those complexities while retaining the essen-
tial simplicity. Real-world experiences coupled with enlightening illustrations make
Scrum come to life. For senior managers and team members alike, this is a must-read
book if you are starting or considering whether to implement Scrum in your organi-
zation. This will certainly be a book recommended to my students.”

— John Hebley, Hebley & Associates

“Kenny unpacks a wealth of wisdom and knowledge in Essential Scrum, providing
valuable and comprehensive insights to the practical application of agile/Scrum.
Whether you’re new to agile or are looking to reach a greater maturity of continuous
improvement in your organization, this is a definitive handbook for your toolbox.”

— David Luzquiños, Head of Agile Enablement, Agile Coach, Betfair

“Kenny Rubin continues to provide clarity and insight into adopting agile in a prag-
matic way. In one hand he holds the formal or ideal Scrum definition, and in the
other, the pragmatic application of it. He brings the wisdom of his workshops and
years of experience to the table for you to read in his latest book. If you are about to
start out on your agile adoption journey or are seeking guidance midcourse, grab a
copy.”

— Cuan Mulligan, freelance coactive Agile coach

“A decade after publication of the first Scrum books, it is time to combine the essen-
tial aspects of the Scrum framework with the practical experiences and approaches
of the last ten years. Kenny Rubin does so in a satisfying and nondogmatic way. The
reader gets a pragmatic look at Scrum and learns when and how to best apply Scrum
to achieve business benefits.”

— Yves Stalgies, Ph.D., Director IT, www.etracker.com

“Adoption of Scrum is most successful when everyone involved—even peripherally—
with product development has a good understanding of the fundamentals. Essential
Scrum provides an ideal overview of both the big picture and the details in an acces-
sible style. It is sure to become a standard reference.”

— Kevin Tureski, Principal, Kevin Tureski Consulting

www.etracker.com

ESSENTIAL SCRUM

The Addison-Wesley Signature Series provides readers with practical and authoritative

information on the latest trends in modern technology for computer professionals.

The series is based on one simple premise: Great books come from great authors.

Titles in the series are personally chosen by expert advisors, world-class authors in

their own right. These experts are proud to put their signatures on the covers, and

their signatures ensure that these thought leaders have worked closely with authors to

de ne topic coverage, book scope, critical content, and overall uniqueness. The expert

signatures also symbolize a promise to our readers: You are reading a future classic.

Visit informit.com/awss for a complete list of available products.

The Addison-Wesley Signature Series
Kent Beck, Mike Cohn, and Martin Fowler, Consulting Editors

Make sure to connect with us!
informit.com/socialconnect

ESSENTIAL SCRUM

A PRACTICAL GUIDE TO THE MOST POPULAR
AGILE PROCESS

KENNETH S. RUBIN

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Rubin, Kenneth S.
 Essential Scrum : a practical guide to the most popular agile process / Kenneth S. Rubin.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-13-704329-3 (pbk. : alk. paper)—ISBN 0-13-704329-5 (pbk. : alk. paper)
 1. Scrum (Computer software development) 2. Agile software development. 3. Project
management. I. Title.
 QA76.76.D47R824 2012
 005.1—dc23
 2012010892

Copyright © 2013 Pearson Education, Inc.

Agile visual icon language copyright © Kenneth S. Rubin and used with permission.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Permis-
sions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to (201) 236-3290.

ISBN-13: 978-0-13-704329-3
ISBN-10: 0-13-704329-5
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann
Arbor, Michigan.
First printing, July 2012

To my wife, Jenine, for all your loving support

To my sons, Jonah and Asher, for inspiring me

To my father, Manny, for teaching me the value of hard work

To my mother, Joyce, for showing me what real courage looks like
(may her memory be a blessing)

This page intentionally left blank

 xi

CONTENTS

List of Figures xxv

Foreword by Mike Cohn xxxi

Foreword by Ron Jeffries xxxiii

Preface xxxv

Acknowledgments xxxix

About the Author xliii

Chapter 1 Introduction 1
What Is Scrum? 1
Scrum Origins 3
Why Scrum? 4
Genomica Results 4
Can Scrum Help You? 5

Complex Domain 8
Complicated Domain 8
Simple Domain 8
Chaotic Domain 9
Disorder 9
Interrupt-Driven Work 9

Closing 10

PART I Core Concepts 11

Chapter 2 Scrum Framework 13
Overview 13
Scrum Roles 14

Product Owner 15
ScrumMaster 16
Development Team 16

Scrum Activities and Artifacts 16
Product Backlog 18

xii Contents

Sprints 20
Sprint Planning 21
Sprint Execution 23
Daily Scrum 23
Done 25
Sprint Review 26
Sprint Retrospective 27

Closing 28

Chapter 3 Agile Principles 29
Overview 29
Variability and Uncertainty 32

Embrace Helpful Variability 32
Employ Iterative and Incremental Development 33
Leverage Variability through Inspection, Adaptation,

and Transparency 35
Reduce All Forms of Uncertainty Simultaneously 36

Prediction and Adaptation 37
Keep Options Open 37
Accept That You Can’t Get It Right Up Front 38
Favor an Adaptive, Exploratory Approach 39
Embrace Change in an Economically Sensible Way 40
Balance Predictive Up-Front Work with Adaptive Just-in-Time Work 43

Validated Learning 44
Validate Important Assumptions Fast 45
Leverage Multiple Concurrent Learning Loops 45
Organize Workflow for Fast Feedback 46

Work in Process (WIP) 48
Use Economically Sensible Batch Sizes 48
Recognize Inventory and Manage It for Good Flow 49
Focus on Idle Work, Not Idle Workers 51
Consider Cost of Delay 52

Progress 54
Adapt to Real-Time Information and Replan 54
Measure Progress by Validating Working Assets 54
Focus on Value-Centric Delivery 55

Performance 56
Go Fast but Never Hurry 56
Build In Quality 56
Employ Minimally Sufficient Ceremony 57

Closing 58

 Contents xiii

Chapter 4 Sprints 61
Overview 61
Timeboxed 62

Establishes a WIP Limit 62
Forces Prioritization 62
Demonstrates Progress 62
Avoids Unnecessary Perfectionism 63
Motivates Closure 63
Improves Predictability 64

Short Duration 64
Ease of Planning 64
Fast Feedback 64
Improved Return on Investment 65
Bounded Error 65
Rejuvenated Excitement 65
Frequent Checkpoints 66

Consistent Duration 67
Cadence Benefits 67
Simplifies Planning 68

No Goal-Altering Changes 69
What Is a Sprint Goal? 69
Mutual Commitment 69
Change versus Clarification 69
Consequences of Change 70
Being Pragmatic 72
Abnormal Termination 72

Definition of Done 74
What Is the Definition of Done? 74
Definition of Done Can Evolve Over Time 76
Definition of Done versus Acceptance Criteria 77
Done versus Done-Done 77

Closing 78

Chapter 5 Requirements and User Stories 79
Overview 79
Using Conversations 81
Progressive Refinement 82
What Are User Stories? 83

Card 83
Conversation 84
Confirmation 85

xiv Contents

Level of Detail 86
INVEST in Good Stories 88

Independent 88
Negotiable 89
Valuable 90
Estimatable 91
Sized Appropriately (Small) 92
Testable 92

Nonfunctional Requirements 93
Knowledge-Acquisition Stories 93
Gathering Stories 95

User-Story-Writing Workshop 95
Story Mapping 96

Closing 98

Chapter 6 Product Backlog 99
Overview 99
Product Backlog Items 100
Good Product Backlog Characteristics 101

Detailed Appropriately 101
Emergent 102
Estimated 102
Prioritized 103

Grooming 104
What Is Grooming? 104
Who Does the Grooming? 105
When Does Grooming Take Place? 106

Definition of Ready 108
Flow Management 110

Release Flow Management 110
Sprint Flow Management 111

Which and How Many Product Backlogs? 112
What Is a Product? 113
Large Products—Hierarchical Backlogs 114
Multiple Teams—One Product Backlog 115
One Team—Multiple Products 117

Closing 118

Chapter 7 Estimation and Velocity 119
Overview 119
What and When We Estimate 120

Portfolio Backlog Item Estimates 121

 Contents xv

Product Backlog Estimates 121
Task Estimates 122

PBI Estimation Concepts 123
Estimate as a Team 123
Estimates Are Not Commitments 124
Accuracy versus Precision 125
Relative Size Estimation 125

PBI Estimation Units 128
Story Points 128
Ideal Days 128

Planning Poker 129
Estimation Scale 130
How to Play 131
Benefits 133

What Is Velocity? 133
Calculate a Velocity Range 134
Forecasting Velocity 135
Affecting Velocity 135
Misusing Velocity 137
Closing 138

Chapter 8 Technical Debt 139
Overview 139
Consequences of Technical Debt 141

Unpredictable Tipping Point 142
Increased Time to Delivery 142
Significant Number of Defects 142
Rising Development and Support Costs 142
Product Atrophy 143
Decreased Predictability 143
Underperformance 143
Universal Frustration 144
Decreased Customer Satisfaction 144

Causes of Technical Debt 144
Pressure to Meet a Deadline 144
Attempting to Falsely Accelerate Velocity 145
Myth: Less Testing Can Accelerate Velocity 145
Debt Builds on Debt 147

Technical Debt Must Be Managed 148
Managing the Accrual of Technical Debt 149

Use Good Technical Practices 149
Use a Strong Definition of Done 149
Properly Understand Technical Debt Economics 150

xvi Contents

Making Technical Debt Visible 153
Make Technical Debt Visible at the Business Level 153
Make Technical Debt Visible at the Technical Level 154

Servicing the Technical Debt 155
Not All Technical Debt Should Be Repaid 157
Apply the Boy Scout Rule (Service Debt When You Happen Upon It) 158
Repay Technical Debt Incrementally 159
Repay the High-Interest Technical Debt First 160
Repay Technical Debt While Performing Customer-Valuable Work 160

Closing 162

PART II Roles 163

Chapter 9 Product Owner 165
Overview 165
Principal Responsibilities 166

Manage Economics 167
Participate in Planning 168
Groom the Product Backlog 169
Define Acceptance Criteria and Verify That They Are Met 169
Collaborate with the Development Team 170
Collaborate with the Stakeholders 171

Characteristics/Skills 171
Domain Skills 171
People Skills 172
Decision Making 173
Accountability 173

A Day in the Life 174
Who Should Be a Product Owner? 176

Internal Development 176
Commercial Development 177
Outsourced Development Project 180
Component Development 180

Product Owner Combined with Other Roles 181
Product Owner Team 182

Product Owner Proxy 183
Chief Product Owner 183

Closing 184

 Contents xvii

Chapter 10 ScrumMaster 185
Overview 185
Principal Responsibilities 185

Coach 185
Servant Leader 186
Process Authority 186
Interference Shield 187
Impediment Remover 187
Change Agent 187

Characteristics/Skills 188
Knowledgeable 188
Questioning 188
Patient 189
Collaborative 189
Protective 189
Transparent 189

A Day in the Life 190
Fulfilling the Role 191

Who Should Be a ScrumMaster? 191
Is ScrumMaster a Full-Time Job? 192
ScrumMaster Combined with Other Roles 192

Closing 193

Chapter 11 Development Team 195
Overview 195
Role-Specific Teams 195
Principal Responsibilities 196

Perform Sprint Execution 196
Inspect and Adapt Each Day 197
Groom the Product Backlog 197
Plan the Sprint 197
Inspect and Adapt the Product and Process 197

Characteristics/Skills 198
Self-Organizing 198
Cross-Functionally Diverse and Sufficient 200
T-Shaped Skills 201
Musketeer Attitude 203
High-Bandwidth Communications 204
Transparent Communication 205
Right-Sized 206
Focused and Committed 207

xviii Contents

Working at a Sustainable Pace 208
Long-Lived 209

Closing 211

Chapter 12 Scrum Team Structures 213
Overview 213
Feature Teams versus Component Teams 213
Multiple-Team Coordination 218

Scrum of Scrums 218
Release Train 220

Closing 223

Chapter 13 Managers 225
Overview 225
Fashioning Teams 227

Define Boundaries 227
Provide a Clear Elevating Goal 228
Form Teams 228
Change Team Composition 229
Empower Teams 230

Nurturing Teams 231
Energize People 231
Develop Competence 231
Provide Functional-Area Leadership 232
Maintain Team Integrity 233

Aligning and Adapting the Environment 233
Promote Agile Values 233
Remove Organizational Impediments 234
Align Internal Groups 234
Align Partners 234

Managing Value-Creation Flow 235
Take a Systems Perspective 235
Manage Economics 236
Monitor Measures and Reports 236

Project Managers 237
Project Management Responsibilities on a Scrum Team 237
Retaining a Separate Project Manager Role 239

Closing 243

 Contents xix

PART III Planning 245

Chapter 14 Scrum Planning Principles 247
Overview 247
Don’t Assume We Can Get the Plans Right Up Front 248
Up-Front Planning Should Be Helpful without Being Excessive 248
Keep Planning Options Open Until the Last Responsible Moment 249
Focus More on Adapting and Replanning Than on Conforming

to a Plan 249
Correctly Manage the Planning Inventory 251
Favor Smaller and More Frequent Releases 252
Plan to Learn Fast and Pivot When Necessary 254
Closing 255

Chapter 15 Multilevel Planning 257
Overview 257
Portfolio Planning 259
Product Planning (Envisioning) 259

Vision 259
High-Level Product Backlog 259
Product Roadmap 260

Release Planning 261
Sprint Planning 264
Daily Planning 264
Closing 265

Chapter 16 Portfolio Planning 267
Overview 267

Timing 267
Participants 268
Process 268

Scheduling Strategies 270
Optimize for Lifecycle Profits 270
Calculate Cost of Delay 271
Estimate for Accuracy, Not Precision 274

Inflow Strategies 275
Apply the Economic Filter 275
Balance the Arrival Rate with the Departure Rate 276
Quickly Embrace Emergent Opportunities 278
Plan for Smaller, More Frequent Releases 279

xx Contents

Outflow Strategies 280
Focus on Idle Work, Not Idle Workers 281
Establish a WIP Limit 281
Wait for a Complete Team 282

In-Process Strategies 283
Use Marginal Economics 283

Closing 285

Chapter 17 Envisioning (Product Planning) 287
Overview 287

Timing 287
Participants 288
Process 290

SR4U Example 290
Visioning 291
High-Level Product Backlog Creation 294
Product Roadmap Definition 295
Other Activities 298
Economically Sensible Envisioning 299

Target a Realistic Confidence Threshold 300
Focus on a Short Horizon 302
Act Quickly 302
Pay for Validated Learning 303
Use Incremental/Provisional Funding 304
Learn Fast and Pivot (aka Fail Fast) 305

Closing 306

Chapter 18 Release Planning (Longer-Term Planning) 307
Overview 307

Timing 308
Participants 308
Process 309

Release Constraints 311
Fixed Everything 311
Fixed Scope and Date 312
Fixed Scope 313
Fixed Date 313
Variable Quality 314
Updating Constraints 314

Grooming the Product Backlog 315
Refine Minimum Releasable Features (MRFs) 316

 Contents xxi

Sprint Mapping (PBI Slotting) 316
Fixed-Date Release Planning 318
Fixed-Scope Release Planning 323
Calculating Cost 325
Communicating 326

Communicating Progress on a Fixed-Scope Release 327
Communicating Progress on a Fixed-Date Release 329

Closing 330

PART IV Sprinting 333

Chapter 19 Sprint Planning 335
Overview 335

Timing 335
Participants 335
Process 336

Approaches to Sprint Planning 338
Two-Part Sprint Planning 338
One-Part Sprint Planning 339

Determining Capacity 340
What Is Capacity? 340
Capacity in Story Points 342
Capacity in Effort-Hours 342

Selecting Product Backlog Items 343
Acquiring Confidence 344
Refine the Sprint Goal 346
Finalize the Commitment 346
Closing 346

Chapter 20 Sprint Execution 347
Overview 347

Timing 347
Participants 348
Process 348

Sprint Execution Planning 349
Flow Management 349

Parallel Work and Swarming 350
Which Work to Start 352
How to Organize Task Work 352

xxii Contents

What Work Needs to Be Done? 353
Who Does the Work? 354

Daily Scrum 354
Task Performance—Technical Practices 355
Communicating 356

Task Board 356
Sprint Burndown Chart 357
Sprint Burnup Chart 359

Closing 360

Chapter 21 Sprint Review 363
Overview 363
Participants 364
Prework 365

Determine Whom to Invite 366
Schedule the Activity 366
Confirm That the Sprint Work Is Done 367
Prepare for the Demonstration 368
Determine Who Does What 368

Approach 368
Summarize 369
Demonstrate 370
Discuss 371
Adapt 371

Sprint Review Issues 372
Sign-offs 372
Sporadic Attendance 372
Large Development Efforts 373

Closing 373

Chapter 22 Sprint Retrospective 375
Overview 375
Participants 377
Prework 378

Define the Retrospective Focus 378
Select the Exercises 379
Gather Objective Data 379
Structure the Retrospective 380

Approach 380
Set the Atmosphere 382
Share Context 382

 Contents xxiii

Identify Insights 385
Determine Actions 387
Close the Retrospective 390

Follow Through 391
Sprint Retrospective Issues 392
Closing 393

Chapter 23 The Path Forward 395
There Is No End State 395
Discover Your Own Path 396
Sharing Best Practices 396
Using Scrum to Discover the Path Forward 397
Get Going! 398

Glossary 401

References 423

Index 427

This page intentionally left blank

 xxv

LIST OF FIGURES

Figure 1.1 Agile development overview 2
Figure 1.2 Scrum benefits 6
Figure 1.3 Cynefin framework 7

Figure 2.1 Scrum practices 14
Figure 2.2 Scrum roles 15
Figure 2.3 Scrum framework 17
Figure 2.4 Product backlog 19
Figure 2.5 Product backlog grooming 19
Figure 2.6 Product backlog item sizes 20
Figure 2.7 Sprint characteristics 21
Figure 2.8 Sprint planning 21
Figure 2.9 Sprint backlog 22
Figure 2.10 Sprint execution 23
Figure 2.11 Daily scrum 24
Figure 2.12 Sprint results (potentially shippable product increment) 25
Figure 2.13 Sprint review 27
Figure 2.14 Sprint retrospective 27

Figure 3.1 Waterfall process 30
Figure 3.2 Categorization of principles 31
Figure 3.3 Defined process 32
Figure 3.4 Scrum uses iterative and incremental development. 34
Figure 3.5 Scrum process model 36
Figure 3.6 Make decisions at the last responsible moment. 38
Figure 3.7 Plan-driven requirements acquisition relative to product

knowledge 39
Figure 3.8 Historical cost of exploration 40
Figure 3.9 Significant late cost of change with sequential development 41
Figure 3.10 Self-fulfilling prophecy 42
Figure 3.11 Flattening the cost-of-change curve 43
Figure 3.12 Balancing predictive and adaptive work 44
Figure 3.13 Learning loop pattern 46
Figure 3.14 Component integration 47
Figure 3.15 How utilization affects queue size (delay) 52

xxvi List of Figures

Figure 3.16 Deliver high-value features sooner. 55
Figure 3.17 Ceremony scale 58

Figure 4.1 Sprints are the skeleton of the Scrum framework. 61
Figure 4.2 The benefits of timeboxing 63
Figure 4.3 The benefits of short-duration sprints 64
Figure 4.4 Excitement over time 65
Figure 4.5 Checkpoint comparison 66
Figure 4.6 Cumulative investment at different states 71
Figure 4.7 Deciding on the next sprint length after sprint termination 73

Figure 5.1 Scrum uses placeholders for requirements. 81
Figure 5.2 A user story template and card 83
Figure 5.3 User story with additional data attached 84
Figure 5.4 User story conditions of satisfaction 85
Figure 5.5 User story abstraction hierarchy 87
Figure 5.6 Example epic 87
Figure 5.7 Example theme 88
Figure 5.8 Highly dependent stories 89
Figure 5.9 Example technical story 90
Figure 5.10 Undesirable technical story 91
Figure 5.11 Nonfunctional requirements 93
Figure 5.12 Knowledge-acquisition story 94
Figure 5.13 Story map 97

Figure 6.1 The product backlog is at the heart of the Scrum framework. 99
Figure 6.2 Product backlog items 100
Figure 6.3 Product backlog items are different sizes. 102
Figure 6.4 Product backlog items are estimated. 103
Figure 6.5 Product backlog items are prioritized. 104
Figure 6.6 Grooming reshapes the product backlog. 105
Figure 6.7 Grooming is a collaborative effort. 106
Figure 6.8 Outside-of-primary-flow grooming with sequential projects 107
Figure 6.9 When grooming happens 108
Figure 6.10 Definition of ready 109
Figure 6.11 Release-level view of the product backlog 111
Figure 6.12 The product backlog as a pipeline of requirements 112
Figure 6.13 The product backlog is associated with the product. 113
Figure 6.14 Hierarchical product backlogs 115
Figure 6.15 Team-specific view of the product backlog 116
Figure 6.16 Scenarios for multiple product backlogs 117

 List of Figures xxvii

Figure 7.1 The relationship among size, velocity, and duration 120
Figure 7.2 What and when we estimate 121
Figure 7.3 Product backlog item estimating concepts 123
Figure 7.4 The full Scrum team participates in estimation. 124
Figure 7.5 Effect of committing on estimates 124
Figure 7.6 Effort versus accuracy when estimating 126
Figure 7.7 Relative size estimation 126
Figure 7.8 Absolute versus relative size estimation 127
Figure 7.9 Planning Poker concepts 129
Figure 7.10 Planning Poker uses binning. 130
Figure 7.11 Innolution Planning Poker cards 131
Figure 7.12 Calculating and using a velocity range 134
Figure 7.13 A team’s velocity over time 136
Figure 7.14 The effect of overtime on velocity (based on a figure from

Cook 2008) 137

Figure 8.1 Consequences of technical debt 141
Figure 8.2 Cost-of-change curve affected by technical debt 143
Figure 8.3 Pressure to meet a deadline can lead to technical debt. 145
Figure 8.4 Accruing technical debt to meet unreasonable fixed scope

and date 146
Figure 8.5 The myth, reality, and good practice of how testing affects

velocity 146
Figure 8.6 As technical debt increases, velocity decreases. 147
Figure 8.7 Activities for managing technical debt 148
Figure 8.8 Example technical debt economic analysis 150
Figure 8.9 Ways to make technical debt visible at the technical level 154
Figure 8.10 Approaches for servicing technical debt 156
Figure 8.11 A technique for managing technical debt when using Scrum 161

Figure 9.1 The product owner faces two directions simultaneously. 165
Figure 9.2 Principal product owner responsibilities 166
Figure 9.3 The product owner manages economics. 167
Figure 9.4 Comparison of customer or business engagement over time 170
Figure 9.5 Product owner characteristics 172
Figure 9.6 A day in the life of a product owner 174
Figure 9.7 Example of a product owner on internal development 177
Figure 9.8 Example of a product owner on commercial development 178
Figure 9.9 Pragmatic Marketing framework 179
Figure 9.10 Example of a product owner on outsourced development 180
Figure 9.11 Example of a product owner on component development 181
Figure 9.12 Same person as product owner of more than one Scrum team 182
Figure 9.13 Hierarchical product owner role 184

xxviii List of Figures

Figure 10.1 Principal ScrumMaster responsibilities 186
Figure 10.2 ScrumMaster characteristics 188
Figure 10.3 A day in the life of a ScrumMaster 190
Figure 10.4 Same person as ScrumMaster of more than one team 193

Figure 11.1 Development team responsibilities with respect to Scrum
activities 196

Figure 11.2 Development team characteristics 198
Figure 11.3 Flocking isn’t the result of top-down planning. 199
Figure 11.4 Flocking: simple rules and frequent feedback 200
Figure 11.5 Team diversity 201
Figure 11.6 T-shaped skills 202
Figure 11.7 Team members must act as if they are all in the same boat. 204
Figure 11.8 The cost of multitasking 208
Figure 11.9 Sustainable pace over time 209

Figure 12.1 One product and multiple component teams 214
Figure 12.2 Two products and multiple component teams 215
Figure 12.3 Combined feature team and component teams 217
Figure 12.4 Scrum of scrums 219
Figure 12.5 Release train structure 221

Figure 13.1 Greatest concerns about adopting agile 225
Figure 13.2 Functional manager responsibilities in a Scrum organization 226
Figure 13.3 Managers define the boundaries. 227
Figure 13.4 Functional managers collectively create Scrum teams. 228
Figure 13.5 Teams rarely have fully connected communication channels. 240
Figure 13.6 Teams frequently form collaboration clusters. 241
Figure 13.7 Funneling coordination through a project or program

manager 242
Figure 13.8 Project manager on complex, multiparty development 243

Figure 14.1 Scrum planning principles 247
Figure 14.2 Big up-front Gantt chart 250
Figure 14.3 When the map and the terrain don’t agree, believe the

terrain. 251
Figure 14.4 Single-release economics 253
Figure 14.5 Multi-release economics 253

Figure 15.1 Different levels of planning 257
Figure 15.2 Scrum Alliance website product roadmap 261
Figure 15.3 A release line in the product backlog 262

 List of Figures xxix

Figure 15.4 Product roadmap releases mapped to the product backlog 263
Figure 15.5 A release can encompass one or more sprints. 263
Figure 15.6 Each sprint has a sprint backlog. 264
Figure 15.7 Hierarchical Scrum planning 266

Figure 16.1 Portfolio-planning activity 268
Figure 16.2 Portfolio-planning strategies 269
Figure 16.3 Cost-of-delay profiles 273
Figure 16.4 Applying the economic filter 276
Figure 16.5 Balancing inflow and outflow in the portfolio backlog 277
Figure 16.6 The value of many emergent opportunities decays rapidly. 279
Figure 16.7 Large products in the portfolio backlog create a convoy. 280
Figure 16.8 Teams are the unit of capacity for establishing the product

WIP limit. 282
Figure 16.9 In-process product decision flow based on marginal

economics 284

Figure 17.1 Envisioning is an ongoing activity. 288
Figure 17.2 Envisioning (product-planning) activity 289
Figure 17.3 Areas of stakeholder value 292
Figure 17.4 Fixed, periodic releases 296
Figure 17.5 SmartReview4You product roadmap 297
Figure 17.6 SR4U knowledge-acquisition sprint storyboard 298
Figure 17.7 Guidelines for economically sensible envisioning 300
Figure 17.8 Consequences of setting the confidence threshold bar

too high 301
Figure 17.9 Decision making under the illusion of certainty 303
Figure 17.10 Incremental/provisional funding 304

Figure 18.1 Different release cadences 307
Figure 18.2 When release planning happens 309
Figure 18.3 Release-planning activity 310
Figure 18.4 Fixed date and fixed scope playing a game of chicken 312
Figure 18.5 Mapping product backlog items to sprints 317
Figure 18.6 Sprint calendar for SR4U Release 1.0 319
Figure 18.7 Product backlog ready for release planning 321
Figure 18.8 Determining the range of features on a fixed-date release 322
Figure 18.9 Location of must-have features relative to the range of

deliverable features 322
Figure 18.10 Results of fixed-scope planning 325
Figure 18.11 Fixed-scope-release burndown chart 327
Figure 18.12 Fixed-scope-release burnup chart 328

xxx List of Figures

Figure 18.13 Variable-scope-release burnup chart 329
Figure 18.14 Fixed-date-release burnup chart (with inverted product

backlog) 330

Figure 19.1 When sprint planning happens 336
Figure 19.2 Sprint-planning activity 337
Figure 19.3 Two-part sprint-planning approach 339
Figure 19.4 One-part sprint-planning approach 340
Figure 19.5 Development team capacity in a sprint 341
Figure 19.6 Sprint backlog showing PBIs and task plan 345

Figure 20.1 When sprint execution happens 347
Figure 20.2 Sprint execution activity 348
Figure 20.3 Cost of multitasking 350
Figure 20.4 Mini waterfall during sprint execution—a bad idea 352
Figure 20.5 Subset of Extreme Programming technical practices 355
Figure 20.6 Example task board 356
Figure 20.7 Sprint burndown chart 358
Figure 20.8 Sprint burndown chart with trend lines 359
Figure 20.9 Sprint burnup chart 360

Figure 21.1 When the sprint review happens 363
Figure 21.2 Sprint review prework 366
Figure 21.3 Sprint review activity 369

Figure 22.1 Edward Bear illustrating the need for a retrospective 376
Figure 22.2 When the sprint retrospective happens 376
Figure 22.3 Sprint retrospective prework 378
Figure 22.4 Sprint retrospective activity 381
Figure 22.5 Aligning perspectives to create a shared context 383
Figure 22.6 Sprint event timeline 384
Figure 22.7 Emotions seismograph 385
Figure 22.8 Retrospective insight card wall 386
Figure 22.9 Insight cards clustered into similarity groups 386
Figure 22.10 Insight cards placed into predetermined groups 387
Figure 22.11 Example of dot voting 388
Figure 22.12 Sprint retrospective issues 391

 xxxi

FOREWORD
BY MIKE COHN

I had lunch today at a Burger King. A sign on the wall proclaimed the restaurant the
“Home of the Whopper” and then proceeded to tell me there were over a million dif-
ferent ways to order a Whopper. If various combinations of extra or no pickles, toma-
toes, lettuce, cheese, and so on can lead to over a million ways to make a hamburger,
there must be billions of possible ways to implement Scrum. And while there is no
single right way, there are better and worse ways to implement Scrum.

In Essential Scrum, Kenny Rubin helps readers find the better ways. His isn’t a
prescriptive book—he doesn’t say, “You must do this.” Instead, he teaches the essen-
tial principles underlying success with Scrum and then gives us choices in how we
live up to those principles. For example, there is no one right way for all teams to plan
a sprint. What works in one company or project will fail in another. And so Kenny
gives us choices. He describes an overall structure for why Scrum teams plan sprints
and what must result from sprint planning, and he gives us a couple of alternative
approaches that will work. But ultimately the decision belongs to each team. Fortu-
nately for those teams, they now have this book to help them.

An unexpected benefit of Essential Scrum is the visual language Kenny intro-
duces for communicating about Scrum. I found these images very helpful in fol-
lowing along with the text, and I suspect they will become commonplace in future
discussions of Scrum.

The world has needed this book for a long time. Scrum started as a small con-
cept. The first book to talk about it—Wicked Problems, Righteous Solutions in 1990
by DeGrace and Stahl—did so in six pages. But in the more than 20 years since that
book appeared, Scrum has expanded. New roles, meetings, and artifacts have been
introduced and refined. With each new piece that was added, we were at risk of losing
the heart of Scrum, that part of it that is about a team planning how to do something,
doing some small part of it, and then reflecting on what the team members did and
how well they did it together.

With Essential Scrum, Kenny brings us back to the heart of Scrum. And from
there teams can begin to make the decisions necessary to implement Scrum, mak-
ing it their own. This book serves as an indispensable guide, helping teams choose
among the billions of possible ways of implementing Scrum and finding one that
leads to success.

— Mike Cohn
Author of Succeeding with Agile, Agile Estimating and Planning, and User Stories Applied
www.mountaingoatsoftware.com

www.mountaingoatsoftware.com

This page intentionally left blank

 xxxiii

FOREWORD
BY RON JEFFRIES

When Kenny asked me to write a foreword for Essential Scrum, I was thinking, “This
will be quick and easy; it must be a short book going straight to a simple description
of what Scrum is.” I knew Kenny’s work, so I knew it would be a good read, and short,
too. What could be better!

Imagine my surprise and delight when I found that this book covers just about
everything you’ll need to know about Scrum, on the first day or years into your use
of Scrum. And Kenny doesn’t stop there. He starts with the central ideas, including
the agile principles that underlie all the agile methods, and a quick view of the Scrum
framework. Then he drills in, deeper and deeper. It’s still a good read, and it’s quite
comprehensive as well.

Kenny covers planning in good detail, looking at requirements, stories, the back-
log, estimation, velocity. Then he takes us deeper into the principles and helps us deal
with all the levels of planning and all the time horizons. He describes how sprints are
planned, executed, reviewed, and improved. And throughout, he gives us more than
the basics, highlighting key issues that you may encounter as you go along.

My own focus in Scrum and agile is on the necessary developer skills to ensure
that teams can deliver real, running, business-focused software, sprint after sprint.
Kenny helps us understand how to use ideas like velocity and technical debt safely
and well. Both of these are critical topics, and I commend them to your attention.

Velocity tells us how much the team is delivering over time. We can use it to get a
sense of how much we’re getting done and whether we’re improving. Kenny warns us,
however, that using velocity as a performance measure is damaging to our business
results, and he helps us understand why.

Technical debt has become a very broad term, referring to almost everything that
could go wrong in the code. Kenny helps us tease apart all the various meanings and
helps us understand why we care about these seemingly technical details. In particu-
lar, I like his description of how putting a team under pressure will inevitably damage
our prospects of getting a good product on time.

Scrum, like all agile methods, relies on an exploratory approach with rapid feed-
back. Kenny tells a story of his brief use of punch cards, and it reminded me of my
earliest experience with computing, many years before Kenny saw his first punch
card.

As a college student, I was lucky enough to get a job as a sort of intern at Strategic
Air Command headquarters in Omaha. In those days all computing was on cards. My

xxxiv Foreword by Ron Jeffries

cards got sent down several floors underground at SAC HQ and run on the computer
that would run the war, if we ever had one. I was lucky to get one or two runs a day.

As soon as my security clearance came through, I would go down to the com-
puter room in the middle of the night. I would sweet-talk Sergeant Whittaker into
letting me run my own programs, sitting at the console of the machine—yes, the
machine whose main job was to launch a nuclear attack. Rest easy, though: The red
button was not in that room.

Working hands-on with the machine, I got ten times as much work done as when
I had to wait for my cards to be taken down and my listings to be brought back up.
Feedback came faster, I learned faster, and my programs worked sooner.

That’s what Scrum is about. Instead of waiting months or even years to find out
what the programmers are doing, in Scrum we find out every couple of weeks. A
Scrum product owner with a really good team will be seeing actual features taking
shape every few days!

And that is what Kenny’s book is about. If you’re new to Scrum, read it through
from beginning to end. Then keep it nearby. If you’ve been doing Scrum for a while,
scan it, then keep it nearby.

When you find yourself thinking about something that’s happening to your
team, or wondering about different things to try, pick up this book and look around.
Chances are you’ll find something of value.

—Ron Jeffries

 xxxv

PREFACE

This book discusses Essential Scrum—the things you have to know if you’re going to
be successful when using Scrum to develop innovative products and services.

What Is Essential Scrum?
Scrum is based on a small set of core values, principles, and practices (collectively the
Scrum framework). Organizations using Scrum should embrace the Scrum frame-
work in its entirety, perhaps not through the entire organization all at once, but cer-
tainly within the initial teams that will use Scrum. Embracing all of Scrum does not
mean, however, that organizations must implement Scrum according to some cookie-
cutter, one-size-fits-all formula. Rather, it means that organizations should always
stay true to the Scrum framework while choosing an appropriate blend of approaches
for their Scrum implementations.

Essential Scrum combines the values, principles, and practices of Scrum with a
set of tried-and-true approaches that are consistent with, but not mandated by, the
Scrum framework. Some of these approaches will be appropriate to your situation;
others will not. Any approach will need to be inspected and adapted to your unique
circumstances.

Origins of This Book
As an agile/Scrum coach and trainer, I am frequently asked for a reference book
for Scrum—one that provides a comprehensive overview of the Scrum framework
and also presents the most popular approaches for applying Scrum. Because I have
been unable to find a single book that covers these topics at a level deep enough to be
useful to today’s practitioners, I found myself recommending a collection of books:
a few that discuss the Scrum framework but are out of date or incomplete; several
highly regarded agile books that do not focus solely on Scrum; and a handful that are
focused on a specific aspect of Scrum or a specific approach but do not cover the full
Scrum framework in depth. That’s a lot of books for someone who just wants a single,
stand-alone resource that covers the essentials of Scrum!

The originators of Scrum (Jeff Sutherland and Ken Schwaber) do have a Scrum-
specific publication called “The Scrum Guide.” This short document (about 15
pages) is described by its authors as the “definitive rule book of Scrum and the

xxxvi Preface

documentation of Scrum itself” (Schwaber and Sutherland 2011). They equate their
document to the rules of the game of chess, “describing how the pieces move, how
turns are taken, what is a win, and so on.” Although useful as a Scrum overview
or rule book, “The Scrum Guide” is by design not intended to be a comprehensive
source of essential Scrum knowledge. Extending the authors’ analogy, giving a new
Scrum team just “The Scrum Guide” and expecting good results would be like giv-
ing a new chess player a 15-page description of the rules of chess and expecting her
to be able to play a reasonable game of chess after reading it. It just isn’t a stand-alone
resource.

This book, Essential Scrum, is an attempt to be the missing single source for
essential Scrum knowledge. It includes an in-depth discussion of Scrum’s principles,
values, and practices—one that in most cases agrees with other agile thought lead-
ers and “The Scrum Guide.” (Where this book offers a different perspective from
what is widely promoted elsewhere, I point it out and explain why.) This book also
describes approaches that are consistent with the Scrum framework and that have
been used successfully by me and teams I have coached. I did not intend for this book
to replace other books that provide a deep vertical treatment of a given Scrum prac-
tice or approach. Such books are complementary to and extend this book. Rather,
think of Essential Scrum as the starting point on the journey of using Scrum to delight
customers.

Intended Audience
For the many thousands of people who have taken my Working on a Scrum Team,
Certified ScrumMaster, and Certified Scrum Product Owner classes, and the many
teams I have coached, this book will refresh and perhaps even clarify topics we have
already discussed. And for the even larger number of people with whom I have not
yet had the pleasure of working, this book will either be your first introduction to
Scrum and agile or it will be a chance to look at Scrum in a different light and per-
haps even improve how you perform Scrum.

I did not write this book for any one specific role—this is not a book specifically
for product owners, or ScrumMasters, or members of the development team. Instead,
it is a book intended to give everyone involved with Scrum, from all the members of
the Scrum team to those with whom they interact in the organization, a common
understanding of Scrum based on a core set of concepts with a clear vocabulary for
discussing them. With this shared foundation my hope is that your organization will
be in a better position to successfully use Scrum to deliver business value.

I imagine that every Scrum team member would have a copy of this book on
her desk open to a chapter relevant to the work at hand. I also envision managers at
all levels of the organization reading it to understand why Scrum can be an effective
approach for managing work and to understand the type of organizational change
that may be necessary to successfully implement Scrum. Organizations using or

 Preface xxxvii

planning to use an agile approach other than Scrum will also find the information
relevant and helpful to their specific agile adoption.

Organization of This Book
This book begins with a brief introduction to Scrum (Chapter 1) and concludes with
a discussion of where you might go next (Chapter 23). The remaining chapters are
organized into four parts:

 � Part I—Core Concepts (Chapters 2–8): Scrum framework, agile principles,
sprints, requirements and user stories, product backlog, estimating and veloc-
ity, and technical debt

 � Part II—Roles (Chapters 9–13): product owner, ScrumMaster, development
team, Scrum team structures, and managers

 � Part III—Planning (Chapters 14–18): Scrum planning principles, multilevel
planning, portfolio planning, envisioning/product planning, and release
planning

 � Part IV—Sprinting (Chapters 19–22): sprint planning, sprint execution,
sprint review, and sprint retrospective

How to Use This Book
As you would expect, I wrote the book assuming that most people would read it lin-
early from front to back. If you are new or newer to Scrum, you should take this
approach because the chapters do tend to build on one another. That being said, if
you are looking for one place to get an end-to-end overview of the Scrum framework
(a highly visual Scrum primer), read and reference Chapter 2.

For those who are more familiar with Scrum, you can use this book as a Scrum
reference guide. If you’re interested in sprint retrospectives, jump directly to Chap-
ter 22. If you are interested in exploring the nuances of the product backlog, jump
directly to Chapter 6. I highly recommend, however, that everyone, even those famil-
iar with Scrum, read Chapter 3 in its entirety. The principles laid out there form
the foundation of the Scrum framework and the rest of the book. It is not simply a
restatement of the values and principles of the Agile Manifesto (Beck et al. 2001) that
is common in many other written descriptions of Scrum.

Visual Icon Language
I am proud to include in this book a new visual language for describing Scrum. This
language is composed from a vocabulary of icons that have been designed to cap-
ture essential Scrum roles, artifacts, and activities. This visual Scrum language is an

xxxviii Preface

effective way to communicate concepts and improves the overall shared understand-
ability of Scrum. If you are interested in obtaining and using the new full-color visual
Scrum language art (this book is printed in two colors), visit www.innolution.com
for details. This website will also host a variety of resources and discussions related to
the book.

Let’s Get Started
So, whatever your role, whatever your situation, you have picked up this book for a
reason. Spend a little time getting to know Scrum. In the pages that follow you just
might find a powerful framework that you can make your own, allowing you to sub-
stantially improve the way you develop and deliver products and services to delight
your customers.

www.innolution.com

 xxxix

ACKNOWLEDGMENTS

This book would not have been possible without the input of many people, including
the thousands of people who have attended my agile-related classes and coaching ses-
sions. By mentioning some people by name, I run the risk of failing to mention oth-
ers. To those whose names I fail to mention, please know that all of our discussions
and email exchanges have been invaluable to me and have definitely influenced this
book!

There are three people in particular I would like to thank: Mike Cohn, Rebecca
Traeger, and Jeff Schaich. Without the unique involvement of each, this book would
be a mere shadow of itself.

Mike Cohn has been a friend and colleague since we first worked together at
Genomica in 2000. He was gracious enough to include my book in the Mike Cohn
Signature Series; by being affiliated with Mike and the other prestigious authors in
that book series, “I look good by the company that I keep,” as my parents would say.
Mike was my go-to person whenever I wanted to bounce around ideas or discuss
book strategies. He always made time in his insane schedule to review each chapter
and give me his thoughtful feedback. Working with Mike all these years has been a
very rewarding experience—one that I hope will continue long into the future.

Rebecca Traeger has been my personal editor on this book. We have worked
together since my days as managing director of the Scrum Alliance in 2007. At that
time Rebecca was the editor of the Scrum Alliance website and through that work
(and much more since) became the industry’s foremost editor on agile-related mate-
rials. Early on in writing this book I reached out to Rebecca and asked if she would
work with me again, and to my good fortune, she agreed. Nobody saw any chapter
unless Rebecca had seen it first. At times her feedback would make me blush, because
she frequently improved how I said something, making it sound both more under-
standable and approachable. If you just love a section of this book, you can be sure
Rebecca had her hands in it. If you don’t, I probably foolishly chose to ignore her
recommendations.

Jeff Schaich is an artist/designer extraordinaire. We have worked on so many dif-
ferent art projects that I can’t recall them all. Early on in the formulation of this book
I wanted to create an agile/Scrum icon vocabulary to use as the basis for my training
presentations and many of the over 200 figures in the book. I knew that I needed a
great designer to pull off this feat. Jeff agreed to take on the challenge. There are times
when this book seemed like two different projects—writing the content and creating

xl Acknowledgments

the artistic concepts. I’m honestly not sure which took more time. I am sure, however,
that without Jeff ’s artistic input, this book would have suffered immeasurably.

I am deeply honored to have both Mike Cohn and Ron Jeffries, two luminaries
in the agile community, write forewords for the book! In their own unique ways each
has done a great job of properly placing the book in context and opening the door
for a discussion of Essential Scrum. Also, Mike, stop eating at Burger King, and Ron,
thanks for not pushing the red button!

I’d also like to thank the many people who took time out of their busy schedules
to review chapters and send me their feedback. Let me start by mentioning reviewers
who provided extensive feedback: Joe Balistrieri, Johannes Brodwall, Leyna Cotran,
Martine Devos, Scott Duncan, Ilan Goldstein, John Hebley, Geir Hedemark, James
Kovacs, Lauri Mackinnon, Robert Maksimchuk, and Kevin Tureski.

In addition, I would like to thank other reviewers who provided excellent feed-
back on select chapters: Lyssa Adkins, John Bauer, Sameer Bendre, Susan Briscoe,
Pawel Brodzinski, Rowan Bunning, Josh Chappell, Lisa Crispin, Ward Cunning-
ham, Cornelius Engelbrecht, Julia Frazier, Brindusa Gabur, Caroline Gordon, Drew
Jemilo, Mike Klimkosky, Tom Langerhorst, Bjarne Larsen, Dean Leffingwell, Mau-
rice le Rutte, David Luzquiños, Lv Yi, Shay McAulay, Armond Mehrabian, Sheriff
Mohamed, Cuan Mulligan, Greg Pease, Roman Pichler, Jacopo Romei, Jens Schauder,
Bill Schroeder, Yves Stalgies, Branko Stojaković, Howard Sublett, Julie Sylvain, Kevin
Tambascio, Stephen Wolfram, and Michael Wollin.

I would also like to thank the staff at Pearson who were great partners in this
project. They tolerated my delays with patience and always offered encouragement.
Special thanks to Chris Guzikowski, who oversaw the whole thing from soup to nuts.
He was there from my first Pearson meeting at a pub in Lexington, MA, through the
final production. I would also like to thank Olivia Basegio for adeptly handling logis-
tics and Julie Nahil who did a fantastic job overseeing the project. In addition, thanks
to Barbara Wood for the great job of helping polish the manuscript and Gail Cocker
for pulling all of the art together into a coherent and beautiful whole.

I am also grateful to my assistant, Lindsey Kalicki, to whom I was able to offload
many important tasks so that I could stay focused on book development. I am lucky
to be able to work with such a skilled professional.

Most of all, I would like to acknowledge my family—Jenine, Jonah, and Asher—
and the critical role that they played. I have asked so very much from them during the
long effort of creating this book. No amount of gratitude can make up for the family
pressure it caused and our lost time together.

Jenine is my loving soulmate and has stuck by me through all of the ups and
downs of writing this book. The sacrifices she made so that I could write would dou-
ble the size of this book if I tried to list them all. I couldn’t have done it without her!

Funny thing is, a year after we were married in 1993, I published my first book,
Succeeding with Objects. At that time Jenine made me promise that I would never
write another book again. Luckily for me, after 15 years memories fade and the

 Acknowledgments xli

crushing workload doesn’t seem as bad in hindsight, so when she urged me to write
this one I was surprised to say the least! She hasn’t yet told me I can’t do book number
three, but I suspect it might be 15 more years before the memory of this one fades
enough for either of us to want me to write another one!

I also deeply appreciate the loving support from my sons, Jonah and Asher. They
gave up time with their dad so that I could write. They were always there to bounce
around ideas and to give input on the book. A number of their content and art sug-
gestions have made their way into the book—and it’s better because of them! I hope
they learned the value of perseverance and that even the most daunting work can be
completed if you take it a step at a time and don’t give up.

Finally, I would like to acknowledge my mom, Joyce Rubin (Genesha Esther bat
Avrahm), for all of the love and support she gave me. Without her influence this book
would never have been possible. Sadly, she did not survive to see its publication. Her
passing in January 2012 left a void in my life and the lives of her family that can never
be filled. She was a very special person to the many whose lives she touched. Mom, I
miss you more than I can possibly express.

This page intentionally left blank

 xliii

ABOUT THE AUTHOR

Kenny Rubin provides Scrum and agile training and coaching to help companies
develop products in an effective and economically sensible way. A Certified Scrum
Trainer, Kenny has trained over 18,000 people on agile and Scrum, Smalltalk devel-
opment, managing object-oriented projects, and transition management. He has
coached over 200 companies, ranging from start-ups to Fortune 10.

Kenny was the first Managing Director of the worldwide Scrum Alliance, a non-
profit organization focused on the successful adoption of Scrum. In addition to this
book, Kenny is also the coauthor of the 1995 book Succeeding with Objects: Decision
Frameworks for Project Management. He received his B.S. in Information and Com-
puter Science from the Georgia Institute of Technology and his M.S. in Computer
Science from Stanford University.

Kenny’s background is rooted in the object-oriented technology community. He
started as a Smalltalk developer on a NASA-funded project back in 1985 and devel-
oped the first blackboard expert system outside of LISP. In 1988 he was fortunate to
join ParcPlace Systems, a start-up company formed as a Xerox PARC spin-off, whose
charter was to bring object-oriented technology out of the research labs and release it
to the world. As a Smalltalk development consultant with many different organiza-
tions in the late 1980s and throughout the 1990s, Kenny was an early adopter of agile
practices. His first use of Scrum was in 2000 for developing bioinformatics software.

In the course of his career, Kenny has held many roles, including successful
stints as a Scrum product owner, ScrumMaster, and member of development teams.
In addition, he has held numerous executive management roles: CEO, COO, VP of
Engineering, VP of Product Management, and VP of Professional Services. He has
also overseen the development of five commercial software product suites, generating
over $200M in aggregate revenue. In addition, he has been directly involved in raising
over $150M in venture capital funding and assisted in taking two companies public
on the NASDAQ.

His multifaceted background gives Kenny the ability to understand (and explain)
Scrum and its implications equally well from multiple perspectives: from the devel-
opment team to the executive board.

This page intentionally left blank

 13

 Chapter 2

SCRUM FRAMEWORK

This chapter provides an overview of the Scrum framework with a primary focus on
its practices, including roles, activities, and artifacts. Subsequent chapters will pro-
vide a deeper treatment of each of these practices, including an in-depth look at the
principles that underlie the practices.

Overview
Scrum is not a standardized process where you methodically follow a series of sequen-
tial steps that are guaranteed to produce, on time and on budget, a high-quality
product that delights customers. Instead, Scrum is a framework for organizing and
managing work. The Scrum framework is based on a set of values, principles, and
practices that provide the foundation to which your organization will add its unique
implementation of relevant engineering practices and your specific approaches for
realizing the Scrum practices. The result will be a version of Scrum that is uniquely
yours.

To better grasp the framework concept, imagine that the Scrum framework is like
the foundation and walls of a building. The Scrum values, principles, and practices
would be the key structural components. You can’t ignore or fundamentally change
a value, principle, or practice without risking collapse. What you can do, however, is
customize inside the structure of Scrum, adding fixtures and features until you have
a process that works for you.

Scrum is a refreshingly simple, people-centric framework based on the values of
honesty, openness, courage, respect, focus, trust, empowerment, and collaboration.
Chapter 3 will describe the Scrum principles in depth; subsequent chapters will high-
light how specific practices and approaches are rooted in these principles and values.

The Scrum practices themselves are embodied in specific roles, activities, arti-
facts, and their associated rules (see Figure 2.1).

The remainder of this chapter will focus on Scrum practices.

14 Chapter 2 � Scrum Framework

Scrum Roles
Scrum development efforts consist of one or more Scrum teams, each made up of
three Scrum roles: product owner, ScrumMaster, and the development team (see
Figure 2.2). There can be other roles when using Scrum, but the Scrum framework
requires only the three listed here.

Activities

Artifacts

Rules

Roles

Scrum practices

Product owner

ScrumMaster

Development team

Product backlog

Sprint backlog

Potentially shippable product increment

Described throughout the book

Sprint

Sprint planning

Product backlog grooming

Daily scrum

Sprint execution

Sprint review

Sprint retrospective

 FIGURE 2.1 Scrum practices

 Scrum Roles 15

The product owner is responsible for what will be developed and in what order.
The ScrumMaster is responsible for guiding the team in creating and following
its own process based on the broader Scrum framework. The development team is
responsible for determining how to deliver what the product owner has asked for.

If you are a manager, don’t be concerned that “manager” doesn’t appear as a role
in Figure 2.2; managers still have an important role in organizations that use Scrum
(see Chapter 13). The Scrum framework defines just the roles that are specific to
Scrum, not all of the roles that can and should exist within an organization that uses
Scrum.

Product Owner
The product owner is the empowered central point of product leadership. He1 is the
single authority responsible for deciding which features and functionality to build
and the order in which to build them. The product owner maintains and commu-
nicates to all other participants a clear vision of what the Scrum team is trying to
achieve. As such, the product owner is responsible for the overall success of the solu-
tion being developed or maintained.

It doesn’t matter if the focus is on an external product or an internal applica-
tion; the product owner still has the obligation to make sure that the most valuable
work possible, which can include technically focused work, is always performed. To

1. In this book the product owner will always be referred to as “he” or “him” and the ScrumMaster
as “she” or “her.” This is consistent with the visual representation of each role within the figures.

Product owner ScrumMaster

Scrum team

Development team

 FIGURE 2.2 Scrum roles

16 Chapter 2 � Scrum Framework

ensure that the team rapidly builds what the product owner wants, the product owner
actively collaborates with the ScrumMaster and development team and must be
available to answer questions soon after they are posed. See Chapter 9 for a detailed
description of the product owner role.

ScrumMaster
The ScrumMaster helps everyone involved understand and embrace the Scrum val-
ues, principles, and practices. She acts as a coach, providing process leadership and
helping the Scrum team and the rest of the organization develop their own high-
performance, organization-specific Scrum approach. At the same time, the Scrum-
Master helps the organization through the challenging change management process
that can occur during a Scrum adoption.

As a facilitator, the ScrumMaster helps the team resolve issues and make improve-
ments to its use of Scrum. She is also responsible for protecting the team from outside
interference and takes a leadership role in removing impediments that inhibit team
productivity (when the individuals themselves cannot reasonably resolve them). The
ScrumMaster has no authority to exert control over the team, so this role is not the
same as the traditional role of project manager or development manager. The Scrum-
Master functions as a leader, not a manager. I will discuss the roles of functional
manager and project manager in Chapter 13. See Chapter 10 for more details on the
ScrumMaster role.

Development Team
Traditional software development approaches discuss various job types, such as
architect, programmer, tester, database administrator, UI designer, and so on. Scrum
defines the role of a development team, which is simply a diverse, cross-functional
collection of these types of people who are responsible for designing, building, and
testing the desired product.

The development team self-organizes to determine the best way to accomplish the
goal set out by the product owner. The development team is typically five to nine peo-
ple in size; its members must collectively have all of the skills needed to produce good-
quality, working software. Of course, Scrum can be used on development efforts that
require much larger teams. However, rather than having one Scrum team with, say, 35
people, there would more likely be four or more Scrum teams, each with a develop-
ment team of nine or fewer people. See Chapter 11 for more details on the develop-
ment team role and Chapter 12 for more details on coordinating multiple teams.

Scrum Activities and Artifacts
Figure 2.3 illustrates most of the Scrum activities and artifacts and how they fit
together.

 Scrum Activities and Artifacts 17

Let’s summarize the diagram, starting on the left side of the figure and working
clockwise around the main looping arrow (the sprint).

The product owner has a vision of what he wants to create (the big cube). Because
the cube can be large, through an activity called grooming it is broken down into a
set of features that are collected into a prioritized list called the product backlog.

A sprint starts with sprint planning, encompasses the development work during
the sprint (called sprint execution), and ends with the review and retrospective. The
sprint is represented by the large, looping arrow that dominates the center of the fig-
ure. The number of items in the product backlog is likely to be more than a develop-
ment team can complete in a short-duration sprint. For that reason, at the beginning
of each sprint, the development team must determine a subset of the product backlog
items it believes it can complete—an activity called sprint planning, shown just to
the right of the large product backlog cube.

As a brief aside, in 2011 a change in “The Scrum Guide” (Schwaber and Suther-
land 2011) generated debate about whether the appropriate term for describing the
result of sprint planning is a forecast or a commitment. Advocates of the word forecast
like it because they feel that although the development team is making the best esti-
mate that it can at the time, the estimate might change as more information becomes
known during the course of the sprint. Some also believe that a commitment on the
part of the team will cause the team to sacrifice quality to meet the commitment or
will cause the team to “under-commit” to guarantee that the commitment is met.

I agree that all development teams should generate a forecast (estimate) of what
they can deliver each sprint. However, many development teams would benefit from

Sprint execution

Sprint review
Sprint retrospective

Sprint planning Sprint backlog

Potentially
shippable product

increment

Daily scrum

Product backlog

Grooming

 FIGURE 2.3 Scrum framework

18 Chapter 2 � Scrum Framework

using the forecast to derive a commitment. Commitments support mutual trust
between the product owner and the development team as well as within the develop-
ment team. Also, commitments support reasonable short-term planning and decision
making within an organization. And, when performing multiteam product develop-
ment, commitments support synchronized planning—one team can make decisions
based on what another team has committed to do. In this book, I favor the term com-
mitment; however, I occasionally use forecast if it seems correct in context.

To acquire confidence that the development team has made a reasonable com-
mitment, the team members create a second backlog during sprint planning, called
the sprint backlog. The sprint backlog describes, through a set of detailed tasks, how
the team plans to design, build, integrate, and test the selected subset of features from
the product backlog during that particular sprint.

Next is sprint execution, where the development team performs the tasks nec-
essary to realize the selected features. Each day during sprint execution, the team
members help manage the flow of work by conducting a synchronization, inspection,
and adaptive planning activity known as the daily scrum. At the end of sprint execu-
tion the team has produced a potentially shippable product increment that represents
some, but not all, of the product owner’s vision.

The Scrum team completes the sprint by performing two inspect-and-adapt
activities. In the first, called the sprint review, the stakeholders and Scrum team
inspect the product being built. In the second, called the sprint retrospective, the
Scrum team inspects the Scrum process being used to create the product. The out-
come of these activities might be adaptations that will make their way into the prod-
uct backlog or be included as part of the team’s development process.

At this point the Scrum sprint cycle repeats, beginning anew with the develop-
ment team determining the next most important set of product backlog items it can
complete. After an appropriate number of sprints have been completed, the product
owner’s vision will be realized and the solution can be released.

In the remainder of this chapter I will discuss each of these activities and arti-
facts in greater detail.

Product Backlog
Using Scrum, we always do the most valuable work first. The product owner, with
input from the rest of the Scrum team and stakeholders, is ultimately responsible
for determining and managing the sequence of this work and communicating it in
the form of a prioritized (or ordered) list known as the product backlog (see Figure
2.4). On new-product development the product backlog items initially are features
required to meet the product owner’s vision. For ongoing product development, the
product backlog might also contain new features, changes to existing features, defects
needing repair, technical improvements, and so on.

The product owner collaborates with internal and external stakeholders to gather
and define the product backlog items. He then ensures that product backlog items

 Scrum Activities and Artifacts 19

are placed in the correct sequence (using factors such as value, cost, knowledge, and
risk) so that the high-value items appear at the top of the product backlog and the
lower-value items appear toward the bottom. The product backlog is a constantly
evolving artifact. Items can be added, deleted, and revised by the product owner as
business conditions change, or as the Scrum team’s understanding of the product
grows (through feedback on the software produced during each sprint).

Overall the activity of creating and refining product backlog items, estimating
them, and prioritizing them is known as grooming (see Figure 2.5).

Feature A
Feature B
Feature C
Defect 23

Refactor X

Feature D

Feature E

Feature F

High-priority items

Low-priority items

 FIGURE 2.4 Product backlog

Creating
and refining

Estimating

Prioritizing

Feature A
Feature B
Feature C

Product backlog

 FIGURE 2.5 Product backlog grooming

20 Chapter 2 � Scrum Framework

As a second brief aside, in 2011 there was another debate as to whether the
appropriate term for describing the sequence of items in the product backlog should
be prioritized (the original term) or ordered, the term used in “The Scrum Guide”
(Schwaber and Sutherland 2011). The argument was that prioritizing is simply one
form of ordering (and, according to some, not even the most appropriate form of
ordering). The issue of how to best sequence items in the product backlog, however, is
influenced by many factors, and a single word may never capture the full breadth and
depth of the concept. Although there may be theoretical merit to the ordered-versus-
prioritized debate, most people (including me) use the terms interchangeably when
discussing the items in the product backlog.

Before we finalize prioritizing, ordering, or otherwise arranging the product
backlog, we need to know the size of each item in the product backlog (see Figure 2.6).

Size equates to cost, and product owners need to know an item’s cost to properly
determine its priority. Scrum does not dictate which, if any, size measure to use with
product backlog items. In practice, many teams use a relative size measure such as
story points or ideal days. A relative size measure expresses the overall size of an item
in such a way that the absolute value is not considered, but the relative size of an item
compared to other items is considered. For example, in Figure 2.6, feature C is size
2 and feature E is size 8. What we can conclude is that feature E is about four times
larger than feature C. I will discuss these measures further in Chapter 7.

Sprints
In Scrum, work is performed in iterations or cycles of up to a calendar month called
sprints (see Figure 2.7). The work completed in each sprint should create something
of tangible value to the customer or user.

Sprints are timeboxed so they always have a fixed start and end date, and gen-
erally they should all be of the same duration. A new sprint immediately follows
the completion of the previous sprint. As a rule we do not permit any goal-altering
changes in scope or personnel during a sprint; however, business needs sometimes
make adherence to this rule impossible. I will describe sprints in more detail in
Chapter 4.

Relative size estimates
(typically story points or ideal days)

Feature A | 5
Feature B | 3
Feature C | 2
Feature D | 5

Feature E | 8

 FIGURE 2.6 Product backlog item sizes

 Scrum Activities and Artifacts 21

Sprint Planning
A product backlog may represent many weeks or months of work, which is much
more than can be completed in a single, short sprint. To determine the most impor-
tant subset of product backlog items to build in the next sprint, the product owner,
development team, and ScrumMaster perform sprint planning (see Figure 2.8).

During sprint planning, the product owner and development team agree on a
sprint goal that defines what the upcoming sprint is supposed to achieve. Using this

Start date End date

Fixed length

Timebox of up to
a calendar month

Sprint 1 Sprint 2 Sprint 3 Sprint 4

 FIGURE 2.7 Sprint characteristics

Tasks = how to do it

Sprint planning is
the first part of
every sprint

Sprint backlog

Grooming

Product backlog

What to do

Feature A
Feature B
Feature C

Sprint planning

 FIGURE 2.8 Sprint planning

22 Chapter 2 � Scrum Framework

goal, the development team reviews the product backlog and determines the high-
priority items that the team can realistically accomplish in the upcoming sprint while
working at a sustainable pace—a pace at which the development team can comfort-
ably work for an extended period of time.

To acquire confidence in what it can get done, many development teams break
down each targeted feature into a set of tasks. The collection of these tasks, along
with their associated product backlog items, forms a second backlog called the sprint
backlog (see Figure 2.9).

The development team then provides an estimate (typically in hours) of the
effort required to complete each task. Breaking product backlog items into tasks is a
form of design and just-in-time planning for how to get the features done.

Most Scrum teams performing sprints of two weeks to a month in duration try to
complete sprint planning in about four to eight hours. A one-week sprint should take
no more than a couple of hours to plan (and probably less). During this time there
are several approaches that can be used. The approach I use most often follows a sim-
ple cycle: Select a product backlog item (whenever possible, the next-most-important
item as defined by the product owner), break the item down into tasks, and deter-
mine if the selected item will reasonably fit within the sprint (in combination with
other items targeted for the same sprint). If it does fit and there is more capacity to
complete work, repeat the cycle until the team is out of capacity to do any more work.

Code the UI
Hours = 5

Add error logging
Hours = 12

Install graphics lib
Hours = 8

Automate tests
Hours = 6

Automate tests
Hours = 8

Create DB schema
Hours = 6

Create icons
Hours = 8

Buffer test
Hours = 2

Each feature … … is broken into a set of tasks

Each task has an
effort-hour estimate

 FIGURE 2.9 Sprint backlog

 Scrum Activities and Artifacts 23

An alternative approach would be for the product owner and team to select all of
the target product backlog items at one time. The development team alone does the
task breakdowns to confirm that it really can deliver all of the selected product back-
log items. I will describe each approach in more detail in Chapter 19.

Sprint Execution
Once the Scrum team finishes sprint planning and agrees on the content of the next
sprint, the development team, guided by the ScrumMaster’s coaching, performs all of
the task-level work necessary to get the features done (see Figure 2.10), where “done”
means there is a high degree of confidence that all of the work necessary for produc-
ing good-quality features has been completed.

Exactly what tasks the team performs depends of course on the nature of the
work (for example, are we building software and what type of software, or are we
building hardware, or is this marketing work?).

Nobody tells the development team in what order or how to do the task-level
work in the sprint backlog. Instead, team members define their own task-level work
and then self-organize in any manner they feel is best for achieving the sprint goal.
See Chapter 20 for more details on sprint execution.

Daily Scrum
Each day of the sprint, ideally at the same time, the development team members hold
a timeboxed (15 minutes or less) daily scrum (see Figure 2.11). This inspect-and-
adapt activity is sometimes referred to as the daily stand-up because of the common
practice of everyone standing up during the meeting to help promote brevity.

Sprint execution takes up the majority of time spent in each sprint

Each feature has a set
of tasks that the team
performs in order to
complete that feature

Sprint backlog Sprint execution

 FIGURE 2.10 Sprint execution

24 Chapter 2 � Scrum Framework

A common approach to performing the daily scrum has the ScrumMaster facili-
tating and each team member taking turns answering three questions for the benefit
of the other team members:

 � What did I accomplish since the last daily scrum?
 � What do I plan to work on by the next daily scrum?
 � What are the obstacles or impediments that are preventing me from making

progress?

By answering these questions, everyone understands the big picture of what is
occurring, how they are progressing toward the sprint goal, any modifications they
want to make to their plans for the upcoming day’s work, and what issues need to be
addressed. The daily scrum is essential for helping the development team manage the
fast, f lexible flow of work within a sprint.

The daily scrum is not a problem-solving activity. Rather, many teams decide to
talk about problems after the daily scrum and do so with a small group of interested
people. The daily scrum also is not a traditional status meeting, especially the kind
historically called by project managers so that they can get an update on the project’s
status. A daily scrum, however, can be useful to communicate the status of sprint
backlog items among the development team members. Mainly, the daily scrum is an
inspection, synchronization, and adaptive daily planning activity that helps a self-
organizing team do its job better.

Every 24 hours

Daily scrum

Sprint execution

 FIGURE 2.11 Daily scrum

 Scrum Activities and Artifacts 25

Although their use has fallen out of favor, Scrum has used the terms “pigs” and
“chickens” to distinguish who should participate during the daily scrum versus who
simply observes. The farm animals were borrowed from an old joke (which has sev-
eral variants): “In a ham-and-eggs breakfast, the chicken is involved, but the pig is
committed.” Obviously the intent of using these terms in Scrum is to distinguish
between those who are involved (the chickens) and those who are committed to
meeting the sprint goal (the pigs). At the daily scrum, only the pigs should talk; the
chickens, if any, should attend as observers.

I have found it most useful to consider everyone on the Scrum team a pig and
anyone who isn’t, a chicken. Not everyone agrees. For example, the product owner is
not required to be at the daily scrum, so some consider him to be a chicken (the logic
being, how can you be “committed” if you aren’t required to attend?). This seems
wrong to me, because I can’t imagine how the product owner, as a member of the
Scrum team, is any less committed to the outcome of a sprint than the development
team. The metaphor of pigs and chickens breaks down if you try to apply it within a
Scrum team.

Done
In Scrum, we refer to the sprint results as a potentially shippable product increment
(see Figure 2.12), meaning that whatever the Scrum team agreed to do is really done
according to its agreed-upon definition of done. This definition specifies the degree

Sprint review

Potentially
shippable product

increment

Sprint executionSprint execution

 FIGURE 2.12 Sprint results (potentially shippable product increment)

26 Chapter 2 � Scrum Framework

of confidence that the work completed is of good quality and is potentially shippable.
For example, when developing software, a bare-minimum definition of done should
yield a complete slice of product functionality that is designed, built, integrated,
tested, and documented.

An aggressive definition of done enables the business to decide each sprint if it
wants to ship (or deploy or release) what got built to internal or external customers.

To be clear, “potentially shippable” does not mean that what got built must actu-
ally be shipped. Shipping is a business decision, which is frequently influenced by
things such as “Do we have enough features or enough of a customer workflow to
justify a customer deployment?” or “Can our customers absorb another change given
that we just gave them a release two weeks ago?”

Potentially shippable is better thought of as a state of confidence that what got
built in the sprint is actually done, meaning that there isn’t materially important
undone work (such as important testing or integration and so on) that needs to be
completed before we can ship the results from the sprint, if shipping is our business
desire.

As a practical matter, over time some teams may vary the definition of done. For
example, in the early stages of game development, having features that are poten-
tially shippable might not be economically feasible or desirable (given the exploratory
nature of early game development). In these situations, an appropriate definition
of done might be a slice of product functionality that is sufficiently functional and
usable to generate feedback that enables the team to decide what work should be done
next or how to do it. See Chapter 4 for more details on the definition of done.

Sprint Review
At the end of the sprint there are two additional inspect-and-adapt activities. One is
called the sprint review (see Figure 2.13).

The goal of this activity is to inspect and adapt the product that is being built.
Critical to this activity is the conversation that takes place among its participants,
which include the Scrum team, stakeholders, sponsors, customers, and interested
members of other teams. The conversation is focused on reviewing the just-com-
pleted features in the context of the overall development effort. Everyone in atten-
dance gets clear visibility into what is occurring and has an opportunity to help guide
the forthcoming development to ensure that the most business-appropriate solution
is created.

A successful review results in bidirectional information flow. The people who
aren’t on the Scrum team get to sync up on the development effort and help guide its
direction. At the same time, the Scrum team members gain a deeper appreciation for
the business and marketing side of their product by getting frequent feedback on the
convergence of the product toward delighted customers or users. The sprint review
therefore represents a scheduled opportunity to inspect and adapt the product. As a

 Scrum Activities and Artifacts 27

Sprint review
Sprint retrospective

Potentially
shippable product

increment

Sprint review is the next-to-last
activity in a sprint

 FIGURE 2.13 Sprint review

matter of practice, people outside the Scrum team can perform intra-sprint feature
reviews and provide feedback to help the Scrum team better achieve its sprint goal.
See Chapter 21 for more details on the sprint review.

Sprint Retrospective
The second inspect-and-adapt activity at the end of the sprint is the sprint retro-
spective (see Figure 2.14). This activity frequently occurs after the sprint review and
before the next sprint planning.

Whereas the sprint review is a time to inspect and adapt the product, the sprint
retrospective is an opportunity to inspect and adapt the process. During the sprint
retrospective the development team, ScrumMaster, and product owner come together

Sprint retrospective

Sprint retrospective is the last
activity in a sprint

Sprint review

 FIGURE 2.14 Sprint retrospective

28 Chapter 2 � Scrum Framework

to discuss what is and is not working with Scrum and associated technical practices.
The focus is on the continuous process improvement necessary to help a good Scrum
team become great. At the end of a sprint retrospective the Scrum team should have
identified and committed to a practical number of process improvement actions that
will be undertaken by the Scrum team in the next sprint. See Chapter 22 for details
on the sprint retrospective.

After the sprint retrospective is completed, the whole cycle is repeated again—
starting with the next sprint-planning session, held to determine the current highest-
value set of work for the team to focus on.

Closing
This chapter described core Scrum practices, focusing on an end-to-end description
of the Scrum framework’s roles, activities, and artifacts. There are other practices,
such as higher-level planning and progress-tracking practices, that many Scrum
teams use. These will be described in subsequent chapters. In the next chapter, I will
provide a description of the core principles on which Scrum is based. This will facili-
tate the deeper exploration of the Scrum framework in subsequent chapters.

 427

A
Absolute sizes, vs. relative sizes in estimation,

125–128
Acceptance criteria

conditions of satisfaction related to
product backlog, 77

defined, 401
definition of ready and, 110
product owner defining and verifying,

169–170
user stories containing confirmation

information, 85–86
Acceptance-test-driven development (ATTD),

85–86, 402
Acceptance tests

conditions of satisfaction expressed via, 85
defined, 401
product owner responsibilities and, 169
verifying conditions of satisfaction, 77

Accountability, of product owner, 173
Accrual of technical debt, managing, 149–152
Accuracy

defined, 402
vs. precision in estimation, 125, 274–275

Actions, resulting from retrospective
deciding what action to take, 389–390
determining possible actions, 387–388
follow through on, 391–392
as output of sprint retrospective, 381
selecting insights to act on, 388

Activities
defined, 402
overview of, 16–18

Adaptation. See also Prediction and adaptation
principle, in agile development

balancing predictive work with adaptive
work, 43–44

based on product review, 371

daily scrum as inspect-and-adapt activity,
354

defined, 402
discovering your own path forward, 396
and exploration in approach to

development, 39–40
as focus of planning rather than

conformance, 249–251
leveraging variability, 35–36
plan-driven development compared with

agile development, 59
responsibilities of development team,

197–198
sprint retrospective and, 375
sprint review and, 363

Agile development
concerns about adopting, 225
defined, 402
managers promoting agile values, 233–234
no end state in, 395
overview of, 1–3
plan-driven approach compared with,

59–60
product backlog in, 1
sharing best practices, 396–397

The Agile Manifesto (Beck), xxxi, 30,
204–205, 210

Agile principles
accepting that you can’t get it right up

front, 38–39
adapting to real-time information and

replanning based on, 54
adaptive, exploratory approach, 39–40
balancing predictive work with adaptive

work, 43–44
batch sizes in, 48–49
cost of change and, 40–43
cost of delays and, 52–54

INDEX

428 Index

Agile principles (continued)
embracing helpful variability, 32–33
focusing on idle work, 51–52
inspection, adaptation, and transparency,

35–36
inventory management, 49–50
iterative and incremental approach to

development, 33–35
keeping options open, 37–38
learning loops in, 45–46
measuring progress by asset validation,

54–55
minimizing unnecessary formality, 57–58
organizing workflow for fast feedback,

46–47
overview of, 29–32
prediction and adaptation, 37
quality built-in to development process,

56–57
reducing uncertainty, 36–37
sustainable pace in performance of work, 56
validated learning in, 44–45
value-centric delivery in, 55
variability and uncertainty and, 32
work in process (WIP) and, 48

Agile Retrospectives (Derby and Larsen), 379
All-at-once product development

defined, 402
in origins of Scrum, 3

All-before-any approach
defined, 402
to work in process, 48

Anticipatory process. See plan-driven
development

Appelo, Jurgen, 230
Approach

defined, 402
essential scrum includes, xxix
realizing Scrum practices, 13

Artifacts
defined, 402
just-in-time approach to creating work

products, 43
managing inventory of planning artifacts,

251–252
potentially shippable product increment

as, 25–26

product backlog as, 18–19
sprint backlog as, 18

Asset teams, 214. See also Component teams
Assets

measuring progress by asset validation,
54–55

monitoring and reports focusing on asset
validation, 236

Assumptions
calculating release costs and, 325–326
defined, 402
replanning based on validation of, 251
validated learning and, 45, 304

Atmosphere, setting for sprint retrospective,
382

ATTD (Acceptance-test-driven development),
85–86, 402

Attendance
sprint retrospective issues, 392
sprint review issues, 372–373

Authority, levels of (Appelo), 230
Automated testing, 149, 355–356

B
Batch size

in agile development, 48–49
comparing plan-driven development with

agile development, 60
defined, 403

Benefits of Scrum, 4–5
Best practices, 396–397
Blame

creating blame-free atmosphere for sprint
retrospective, 382

sprint retrospective issues, 393
“Boil-the-ocean” projects, 65
Boy Scout rule

defined, 403
servicing technical debt when you happen

upon it, 158–159
Budget constraint

fixed date approach, 313–314
fixed everything approach, 311–312
fixed scope and date approach, 312–313
fixed scope approach, 313
in release planning, 311

 Index 429

Burndown chart
defined, 403
for fixed-scope release, 327–328
sprint, 357–359

Burnup charts
defined, 403
for fixed-scope release, 328–329
sprint, 359–360

Business
engagement pattern with, 170
making technical debt visible at business

level, 153–154
ScrumMaster skills related to business

domain, 188

C
Cadence

benefits of consistent duration of sprints,
67–68

defined, 403
Capacity

defined, 403
in Kanban, 10
measuring in effort-hours, 342–343
measuring in story points, 342
sprint planning, 22, 340–342
underutilization of, 351

Card format, for user stories, 83–84
Ceremony

defined, 403
minimizing unnecessary, 57–58, 368
plan-driven development compared with

agile development, 60
Change

consequences of, 70–71
handling cost of, 40–43
maintaining sprint goals despite, 69–73
managing, 79
overcoming the status quo, 398–399
as product backlog item, 101

Change agent, ScrumMaster as, 187, 191
Chaotic domain

in Cynefin framework, 6–7, 9
defined, 403

Checkpoints, short duration sprints providing
frequent, 66–67

Chickens and pigs, 25, 403
Chief product owner, 183–184, 404
Clarification, of sprint goals, 69–70
Closing retrospectives, 390–391
Closure, timeboxing enforcing, 63
CMMI maturity model, 395
Coach

a day in the life of ScrumMaster, 190
ScrumMaster as, 16, 185–186

Code refactoring. See Refactoring code
Cohn, Mike, xxv, xxxiii–xxxiv, 129–130, 206,

395, 397–398
Collaboration

benefits of face-to-face communication, 205
cross-cluster, 240–241
funneling through project manager,

242–243
of product owner with development team,

170–171
of product owner with stakeholders, 171
ScrumMaster skills, 189
in sprint review, 370

Commercial development projects, 177–179
Commercial-off-the-shelf (COTS), 8
Commitment

as basis of sprint goals, 69
change and, 71
checking if realistic, 344–345
defined, 404
of development team, 207–208
estimates contrasted with, 124–125
sporadic attendance and, 372–373
sprint planning outcomes and, 17–18, 346

Communication
channels between teams, 240–241
development team skills/characteristics,

204–205
facilitating shared understanding, 81–82
product owner skills, 172–173
of progress in fixed-date release, 329–330
of progress in fixed-date release planning,

327–329
ScrumMaster skills, 189–190
of sprint execution progress, 356
transparency of, 205–206

Competence, managers developing team
members, 231–232

430 Index

Complaints, sprint retrospective issues, 393
Complex adaptive systems

defined, 404
flight pattern of geese illustrating, 199
Scrum origins and, 3

Complex domain
in Cynefin framework, 6–8
defined, 404

Complexity, Scrum providing confidence in
handling, 6

Complicated domain
in Cynefin framework, 6–8
defined, 404

Component teams
combining with feature teams, 217–218
defined, 404
feature teams compared with, 213–216
product owner for, 177, 180–181
when defining a product, 116
when to use, 216

Components
development of, 213–214
development projects, 180–181
integration and testing, 46–47

Conditions of satisfaction, 404. See also
Acceptance criteria

Confidence, acquiring in sprint planning,
344–346

Confidence threshold
defined, 404
for product planning, 290, 298
targeting realistic, 300–302

Confirmation information, in user stories,
85–86

Conformance to plans, in plan-driven
development, 54, 60, 250

Constraints, in release planning
fixed date, 313–314
fixed everything approach, 311–312
fixed scope, 313
fixed scope and date, 312–313
inputs to sprint planning, 338
overview of, 311
updating, 314
variable quality and, 313–314

Continuous deployment (delivery)
defined, 404

planning release of features to customers,
308

product roadmap and, 260
Continuous improvement

no end state in Scrum, 395
sprint retrospective and, 375
while applying iterative and incremental

development, 34
Continuous integration

defined, 404
helping work at a sustainable pace, 209
technical practice, 355
use of good practices prevents accrual of

technical debt, 149
Contracts, limitations of fixed-price contracts,

235
Conversations

in development of user stories, 84–85
facilitating shared understanding, 81–82

Coordination. See also Collaboration
cross-cluster, 240–241
funneling through project manager,

242–243
Cost of delay

Agile principles and, 52–54
comparing plan-driven development with

agile development, 60
defined, 404
portfolio planning and, 271–274
for properly quantifying technical debt

economics, 150–152
Costs

calculating in release planning process,
325–326

handling cost of change, 40–43
of idle work, 52–53
Scrum reducing, 6
technical debt impacting development

costs, 142–143
COTS (Commercial-off-the-shelf), 8
Cross-cluster collaboration, 240–241
Cross-functional diversity and sufficiency, of

development team, 200–201
Cross-functional teams

in agile development, 2
defined, 405
feature teams, 213

 Index 431

high-bandwidth communication and, 205
managers forming, 228–229
quality built-in to development process,

56–57
vs. role-specific teams, 195–196

Cunningham, Ward
on refactoring, 149
on technical debt, 139–140

Customer satisfaction
Scrum benefits, 6
technical debt decreasing, 144

Customer uncertainty
defined, 405
reducing, 36

Customers
engagement pattern with, 170–171
planning release of features to, 307
product owner understanding needs of, 166
repaying technical debt while performing

customer-valuable work, 160–162
value-centric delivery focused on needs

of, 55
value of user stories to, 90

Cynefin framework
defined, 405
for situation-appropriate decision making,

6–7

D
Daily planning, 258, 264–265
Daily scrum

approaches to, 397
daily planning during, 264–265
defined, 405
sprint execution and, 354
sprints and, 23–25
when grooming occurs and, 108

Daily stand-up. See Daily scrum
Date constraint

fixed date approach, 313–314
fixed everything approach, 311–312
fixed scope and date approach, 312–313
fixed scope approach, 313
in release planning, 311

Deadlines, resulting in technical debt,
144–145

Decision making
economic filter for go/no-go decision

making, 275–276
illusion of certainty and, 303
incremental/provisional approach to

funding, 304–305
keeping options open, 37–38, 249
plan-driven development compared with

agile development, 59
by product owner, 173
which work needs to be done, 353–354
which work to start, 352

DEEP (Detailed appropriately, Emergent,
Estimated, and Prioritized)

appropriate detail, 101–102
characteristics of good product backlog, 101
defined, 405
emergent nature of, 102
prioritization in, 103–104
size estimates in, 102–103

Defects
compounding, 142
defining when sprint is complete or done

and, 75
as product backlog item, 100–101
as technical debt, 139

Defined process, in plan-driven development,
32

Definition of done
checklist, 74–76
confidence threshold as envisioning, 290
defined, 405
development team needs skills to meet,

200–201
evolving over time, 76–77
for managing technical debt, 149–150
no end state in Scrum, 395
nonfunctional requirements for inclusion

in, 93
overview of, 25–26
preventing accrual of technical debt, 150
versus acceptance criteria, 77
what work needs to be done, 353–354

Definition of ready
acceptance criteria, 169
checklist, 109–110
defined, 405

432 Index

Definition of ready (continued)
overview, 108–110
product backlog items for sprint planning,

336
providing boundaries for work at the task

level, 353
selecting product backlog items and, 344
understanding how to demonstrate items

at sprint review, 370
Delays, cost of. See Cost of delay
Delegation, as means of empowering teams,

230
Deliverables. See also Potentially shippable

product increments (PSIs)
short duration sprints and, 65–66
technical debt increasing time to delivery,

142
Demonstration aspect, of sprint review, 368,

370
Design flaws, as technical debt, 139
Detail

in product backlog, 101–102
in user stories, 86–88

Development team
accountability of product owner to, 173
communication skills of, 204–205
cross-functional diversity and sufficiency

of, 200–201
daily scrum for, 23
defined, 405
focus and commitment of, 207–208
grooming product backlog, 105–106
long-lived nature of, 209–211
multiple teams with one product backlog,

115–116
Musketeer attitude (all for one, one for all),

203–204
one team with multiple product backlogs,

117–118
overview of, 195
participant in product planning, 288–289
participant in release planning, 308
participant in requirements conversation,

84
participant in sprint execution, 348
participant in sprint planning, 335
participant in sprint retrospective, 377
participant in sprint review, 364–365

PBI estimation, 123–124
product owner collaborating with, 166,

170–171
responsibilities of, 196–197
role of, 16
role-specific teams, 195–196
rules of Planning Poker and, 132
as Scrum role, 16
self-organizing nature of, 198–200
small size of, 206
sprint planning, 21–23
sustainable pace in performance of work,

208–209
T-shaped skills, 201–203
technical practices for task performance,

355–356
transparency of communication, 205–206
when grooming occurs and, 107–108

Discussions
in sprint review, 371
when estimating, 121–122
when writing user stories, 81–82, 85

Disorder domain
in Cynefin framework, 6–7, 9
defined, 406

Diversity, of development team, 200–201
Documentation

conversations compared with, 81–82
cost of delay example involving, 53–54
in definition of done, 74
lack of in VersionOne 2011 survey, 225
plan-driven development as document-

centric process, 57
in Scrum development, 57–58
supplementing user stories, 84

Domain skills, of product owner, 171–172
Done

acceptance criteria compared with, 77
checklist, 74–76
defined, 406
done vs. done done, 77–78
evolution of definition of done over time,

76–77
no end state in Scrum, 395
sprint review confirming, 367–368
value of strong definition of done in

preventing accrual of technical debt,
149–150

 Index 433

Dot voting
defined, 406
selecting which insights to act on, 388

Duration, of sprints
calculating from estimated size and

measured velocity, 119–120
consistency of, 67–68
short duration preference, 64–67
story points in calculation of, 128

E
Economic filter

defined, 406
for go/no-go decision making, 275–276

Economics
of abnormal sprint termination, 72–73
of aligning all teams to a single product

backlog, 115–116
of change, 70–71
of component teams, 218
of developing a project plan per sprint, 349
focusing on short time horizon in product

planning, 302
improved by fast feedback, 65
incremental/provisional funding, 304–305
learning fast and pivoting as necessary, 305
of long-lived teams, 210
managing, 167–168, 236
marginal economics applied to in-process

products, 283–285
of product planning, 299–300
of release approach, 253
of rising development costs, 142
single versus multiple release, 252–253
of smaller, more frequent releases, 279–280
speed and efficiency and, 302–303
targeting realistic confidence threshold,

300–302
of technical debt, 150–152
validated learning, 303–304

Economies of scale, manufacturing vs.
product development, 48

Effort/cost, scheduling portfolio backlog
items and, 274

Effort hours
capacity in, 342–343

checking if commitment is realistic,
344–345

tasks in, 122
Emergent opportunities

defined, 406
embracing quickly, 278–279

Emotions seismograph
defined, 406
mining for insights, 385
sprint retrospective and, 384–385

Empirical process control (Schwaber and
Beedle), 35, 406

End of life, not repaying technical debt for
products approaching, 157

End uncertainty
defined, 406
reducing uncertainty, 36

Enjoyment, Scrum benefits, 6
Enterprise Transition Community (ETC), 398
Environment, managers’ responsibilities

aligning internal groups, 234
aligning partners, 234–235
promoting agile values, 233–234
removing organizational impediments,

234
Envisioning. See Product planning
Epics

defined, 406
estimating, 103
in release train, 221
representing product backlog items,

294–295
size of user stories and, 86–88
story mapping technique and, 96

Errors, setting limit or bound on, 65
Estimable criteria, INVEST, 91–92
Estimation

accuracy vs. precision, 125, 274–275
commitments contrasted with, 124–125
defined, 407
development team in PBI estimation,

123–124
ideal days for measurements in, 128–129
overview of, 119–120
of PBIs, 121
Planning Poker approach, 129–133
of product backlog, 121–122

434 Index

Estimation (continued)
product owner and, 175
relative sizes vs. absolute sizes, 125–128
scale in, 130
story points for measurements in, 128
of tasks, 122
units for, 128
what and when of, 120–121

ETC (Enterprise Transition Community), 398
Event timeline

defined, 407
mining for insights, 385
sprint retrospective and, 384

Excitement/enthusiasm, short duration
sprints rejuvenating, 65–66

Exercises
inputs for sprint retrospective, 380
selecting for use in sprint retrospective, 379

Experiments, knowledge-acquisition user
stories, 93

Exploitation, 59, 407
Exploration

defined, 407
knowledge-acquisition user stories, 93–95
plan-driven development compared with

agile development, 39–40, 59
External stakeholders

defined, 407
product owner collaborating with, 171

Extreme Programming (Beck and Andres),
355, 407

F
Face-to-face communication, 205
Facilitator

ScrumMaster as, 16
for sprint execution, 348
for sprint planning, 335–336
for sprint retrospective, 393
for sprint review, 368

Fail fast, 305, 407
Fast feedback. See also Feedback

defined, 407
early review and, 367
monitoring and reports aligned to, 236
organizing workflow for, 46–47

plan-driven development compared with
agile development, 59

short duration sprints aiding, 64–65
technical debt and, 139

Fast pace, of development
fast delivery as Scrum benefit, 6
go fast but never hurry, 56

Feature teams
combining with component teams,

217–218
comparing with component teams,

213–216
defined, 407
product owner, 180-181

Features
defined, 407
as product backlog item, 100–101
release f low management and, 110–111
user stories and, 87–88

Feedback. See also Fast feedback
in iterative and incremental development,

34–35
learning fast and pivoting as necessary, 305
learning loops and, 45–46
organizing workflow for, 46–47
performance feedback given by managers,

232
plan-driven development compared with

agile development, 59
in prioritization of iterations, 2
short duration sprints aiding, 64–65
sprint review and, 364–365

Fixed date constraint, in release planning,
313–314

Fixed-date release
calculating costs in, 325–326
communicating progress of, 329–330
defined, 408
overview of, 318–323
planning and, 67–68

Fixed everything constraint, in release
planning, 311–312

Fixed-price contracts, limitations of, 235
Fixed scope and date constraints, in release

planning, 312–313
Fixed scope constraint, in release planning,

313

 Index 435

Fixed-scope release
calculating costs in, 325–326
communicating progress of, 327–329
defined, 408
planning, 323–325
product roadmap and, 260–261

Flow
daily scrum in management of, 354
deciding which work needs to be done,

353–354
deciding which work to start, 352
defined, 408
managing in sprint execution, 349–350
organizing task work, 352–353
organizing workflow for fast feedback,

46–47
parallel work and swarming, 350–352
release f low management, 110–111
Scrum used in organizing work flow, 3
sprint f low management, 111–112,

349–350
who does the work, 354

Focus
of development team, 207–208
of sprint retrospective, 378–379

Forecasts
defined, 408
terminology choices for sprint planning

outcomes, 17–18
velocity, 135
vs. commitments, 346

Formality
minimizing unnecessary, 57–58
plan-driven development compared with

agile development, 60
unnecessary formality defined, 420

Framework, for Scrum
activities and artifacts, 16–18
closing review, 28
core values, principles, and practices in,

xxix
daily scrum, 23–25
defined, 408, 416
overview of, 13
practices, 14
product backlog, 18–20
roles, 14–16
sprint execution, 23

sprint planning, 21–23
sprint results, 25–26
sprint retrospective, 27–28
sprint review, 26–27
sprints, 20–21, 61

Frustration, technical debt resulting in, 144
Functional managers. See Managers
Funding, incremental/provisional approach

to, 304–305

G
Gantt chart

sprint execution and, 349
of up-front plan, 250

Go/no-go decision making
economic filter for, 275–276
funding decisions, 299

Goals. See also Sprint goal
managers providing team goals, 228
no end state for, 395

Grenning, James, 129
Grooming

defined, 408
insight backlog, 390
overview of, 104
product backlog, 19, 315
responsibilities of development team, 197
responsibility of product owner, 169
in Scrum framework, 17
ScrumMaster working with product owner

on, 190
what it is, 104–105
when does it occur, 106–108
who does it, 105–106

Groups
compared with teams, 209–210
defined, 408
managers role in aligning internal, 234

H
Happened-upon technical debt, 155, 158–159,

408
Harvesters (Goldberg and Rubin), 217
Hidden agendas, transparency and, 189
Hierarchical product backlogs, for large

products, 114–115

436 Index

High-bandwidth communication, devel-
opment team skills/characteristics,
204–205

Hiring/firing authority, of managers, 229

I
Ideal days

defined, 408
measuring magnitude of PBI, 128–129
as relative size measures, 20

Ideal hours
defined, 408
task estimated in, 122

Ideation, 288
Idle work

comparing plan-driven development with
agile development, 60

defined, 409
focusing on idle work not idle workers,

51–52, 281
monitoring and reports focusing on, 236

Idle workers, 51–52, 281, 409
Impediments

defined, 409
managers removing, 234
ScrumMaster removing, 187, 191

Implementable stories
defined, 409
size of user stories and, 87
story mapping technique and, 97

In-process products
defined, 409
marginal economics applied to, 283–285
overview of, 283
portfolio planning and, 268

Incremental approach, to servicing technical
debt, 159

Incremental development
agile principles underlying Scrum, 33–35
defined, 409
short duration sprints rejuvenating

participant excitement, 65
Incremental funding

defined, 409
economics of product planning, 304–305

Independent criteria, INVEST, 88–89

Inflow strategies, portfolio planning
balancing product f low into/out of

portfolio backlog, 276–278
economic filter for go/no-go decision

making, 275–276
embracing emergent opportunities,

278–279
overview of, 275
small, frequent releases, 279–280

Information radiator. See also
Communication

defined, 409
elements of, 356

Innovation accounting
defined, 409
metrics in, 236–237

Innovation waste, 90, 409
Insight backlog

defined, 409
grooming, 390
inputs for sprint retrospective, 381
as source of insights, 386

Insight cards, 386–387
Insights, in sprint retrospective

identifying, 385–387
inputs for sprint retrospective, 381
insight backlog, 390
selecting among, 388–389

Inspection
daily scrum as inspect-and-adapt activity,

354
defined, 409–410
discovering your own path forward, 396
leveraging variability, 35–36
planning based in inspection and

adaptation, 248
responsibilities of development team,

197–198
sprint retrospective and, 375
sprint review and, 363

Integration
of components, 46–47
continuous integration practice, 149, 404
defined, 410
of improvement actions, 391
release train approach (Leffingwell) and,

222

 Index 437

Integration management, technical debt and,
140

Integration tests, 75
Interference shield, ScrumMaster as, 187
Internal development projects, choosing

product owner for, 176–177
Internal stakeholders

defined, 410
product owner collaborating with, 171

Internationalization, testing in definition of
done, 75

Interrupt-driven work, Scrum not suited for,
9–10

Inventory
defined, 410
managing in agile development, 49–50
managing planning artifacts, 251–252
plan-driven development compared with

agile development, 60
INVEST criteria, for user stories

defined, 410
estimable, 91–92
independent, 88–89
negotiable, 89–90
overview of, 88
sized appropriately, 92
testable, 92
valuable, 90–91

Investment, change impacting, 70–71
Iterative development

in agile development, 2–3
agile principles underlying Scrum, 33–35
defined, 410

J
Jeffries, Ron, xxvii–xxviii, xxxiv, 83
JIT (just in time). See Just in time (JIT)
Just enough

appropriate detail in product backlog, 101
of predictive planning, 300
requirements and, 79

Just in time (JIT)
appropriate detail in product backlog, 101
balancing predictive work with adaptive

work, 43–44
balancing up-front planning with just-in-

time planning, 248

creating work products, 43
defined, 410
keeping options open, 249
requirements and, 79
sprint planning, 335

K
Kanban

defined, 410
development process suited for interrupt

driven work, 9–10
Katz, Ralph, 210
Kerth, Norm, 375, 379
Knowledge acquisition

as product backlog item, 100–101
sprint for, 298
user stories, 93–95

Knowledgeable, ScrumMaster skills, 188
Known technical debt

defined, 410
repaying incrementally, 159
repaying while performing customer-

valuable work, 160–161
servicing, 155–156

L
Last responsible moment (LRM) (Poppen-

dieck and Poppendieck)
defined, 411
keeping options open, 37

Leadership
managers providing in functional areas,

232–233
product owner role, 15

Learning
discovering your own path forward, 396
economics of product planning, 305
fast learning combined with pivoting,

254–255
managers role in development of

competence, 231–232
Learning loops

aligning performance feedback to, 232
concurrency of, 45–46
defined, 411

Leffingwell, Dean, 272

438 Index

Lifecycle profits
defined, 411
impact of cost of delay on, 54
optimizing scheduling for lifecycle

profitability, 270–271
Longer-term planning. See Release planning
LRM (last responsible moment) (Poppendieck

and Poppendieck)
defined, 411
keeping options open, 37

M
Man-hours, task estimated in, 122
Managers

aligning internal groups, 234
aligning partners, 234–235
changing team composition, 229
defining team boundaries, 227
developing team member competence,

231–232
empowering teams, 230–231
energizing team members, 231
fashioning teams, 226
forming teams, 228–229
maintaining team integrity, 233
managing economics, 236
monitoring measures and reports, 236–237
overview of, 225–226
participating in sprint retrospective, 377
project management responsibilities,

237–239
promoting agile values, 233–234
providing leadership in functional areas,

232–233
providing team goals, 228
removing organizational impediments,

234
systems perspective of, 235
when to retain separate project manager

role, 239–243
Manufacturing. See Product manufacturing
Marginal economics, applied to in-process

products, 283–285
Maturity models, not part of Scrum, 395
Means uncertainty

defined, 411
reducing uncertainty, 36

Measures (metrics)
of capacity, 342–343
managers monitoring, 236–237

Mess (Martin), terminology for technical
debt, 140

Milestone-driven planning. See Release
planning

Milestones, in short duration sprints, 66–67
Minimum marketable features (MMFs). See

Minimum releasable features (MRFs)
Minimum releasable features (MRFs)

baseline values for actionable metrics, 2
37

defined, 411
defining product roadmap and, 295–296
determining in release planning, 309–310,

320
marginal economics applied to in-process

products, 284
refining, 316

Minimum viable product (MVP). See
Minimum releasable features (MRFs)

MMFs (minimum marketable features). See
Minimum releasable features (MRFs)

Monitoring measures and reports, managers,
236–237

Motivation
managers role in energizing people, 231
product owner skills, 173

MRFs (Minimum releasable features). See
Minimum releasable features (MRFs)

Multilevel planning
daily planning, 264–265
overview of, 257–258
portfolio planning, 259
product planning, 259–261
release planning, 261–263
sprint planning, 263

Multiple teams
coordinating using release train approach,

220–223
coordinating using scrum of scrums,

218–220
Multitasking, cost of, 350–351
Musketeer attitude (all for one, one for all)

defined, 411
development team skills/characteristics,

203–204

 Index 439

Must-have features
defined, 411
defining product roadmap and, 295
determining in release planning, 320
in focusing on short time horizon, 302
release f low management and, 110–111

MVP (Minimum viable product). See
Minimum releasable features (MRFs)

N
Naive technical debt, 140, 412
Negotiable criteria, INVEST, 89–90
New products

portfolio planning. See Portfolio planning
product planning. See Product planning

Nice-to-have features
defined, 412
release f low management and, 110–111
release planning, 314, 320

Nonaka, Ikujiro, 3
Nonfunctional requirements, 93, 412

O
Objective data

gathering for sprint retrospective, 379
inputs for sprint retrospective, 380

One-part approach, to sprint planning,
339–340

One-product-one-product-backlog rule
large products and, 114–115
multiple teams and, 115–116
what is a product and, 113–114

Opportunities, embracing emergent
opportunities quickly, 278–279

Options, keeping options open, 37–38, 249
Ordered, terminology for product backlog

sequences, 20
Organizational impediments. See

Impediments
Outflow strategies, portfolio planning

establishing WIP limits, 281–282
focusing on idle work not idle workers,

281
overview of, 280
waiting until entire team is in place,

282–283

Outsourcing
choosing product owner for outsourced

projects, 180
limitations of fixed-price contracts, 235

Overtime, impact on quality and velocity,
136–137

P
Parallel work, sprint execution and, 350–352
Participants

in portfolio planning, 268
in product planning, 288–289
in release planning, 308
in sprint execution, 348
in sprint planning, 335–336
in sprint retrospective, 377–378
in sprint review, 364–365

Partners, managers aligning, 234–235
Path forward

discovering, 396
no end state in Scrum, 395
overcoming the status quo, 398–399
sharing best practices, 396–397
using Scrum to discover, 397–398

Patience, ScrumMaster skills, 189
Patton, Jeff, 96
PBI estimation

accuracy vs. precision in, 125
contrasting estimates with commitments,

124–125
development team in, 123–124
overview of, 121–122
Planning Poker approach to, 129–130
relative sizes vs. absolute sizes, 125–128
units for, 128–129

PBIs (product backlog items). See Product
backlog items (PBIs)

People skills, of product owner, 172–173
Perfectionism, avoiding unnecessary, 63
Performance

definition of done and, 75
definition of ready and, 110
feedback given by managers, 232
technical debt resulting in

underperformance, 143
Performance principle, in agile development

minimizing unnecessary formality, 57–58

440 Index

Performance principle, in agile development
(continued)

overview of, 56
quality built-in to development process,

56–57
sustainable pace in performance of work,

56
Person-hours, task estimated in, 122
Personas (roles)

defined, 412
in user stories, 96

Pichler, Roman, 101
Pigs and chickens, 25, 412
Pipeline of requirements, product backlog as,

112
Pivoting

defined, 412
economics of product planning, 305
envisioning, 288–289
innovation accounting, 237
marginal economics applied to in-process

products, 283–284
planning and, 254–255

Placeholders
product backlog items (PBIs) as

requirements placeholder, 80–81
user stories marking exploration work, 94

Plan-driven development
agile principles compared with, 59–60
all-before-any approach to work in

process, 48
assumptions in, 45
beliefs regarding, 30
costs of change in, 43
defined, 412
defined process in, 32
as high-ceremony approach, 57
integration and testing components in,

46–47
limitations regarding re-planning, 54
linear approach to uncertainty in, 36
phase orientation vs. customer

expectations, 54–55
requirements in, 79
risks related to up front planning, 38–39
sequential approach compared with agile’s

exploratory approach, 39–40

types of, 29
variability not accounted for in, 35

Planning
accepting that you can’t get it right up

front, 38–39
adapting to real-time information, 54
consistent duration of sprints simplifying,

67–68
daily planning, 264–265
a day in the life of product owner, 175
multilevel approach to, 257–258
portfolio planning. See Portfolio planning
product owner participating in, 168–169
product planning. See Product planning
release planning. See Release planning
short duration sprints aiding, 64
sprint execution, 349
sprint planning. See Sprint planning
sprints, 21–23

Planning Poker
defined, 412
how to play, 131–133
overview of, 129–130
scale in assigning estimates, 130

Planning principles
emphasis on small, frequent releases,

252–254
focus on adapting and replanning rather

than conforming, 249–251
keeping options open, 249
learning fast and pivoting as necessary,

254–255
managing inventory of planning artifacts,

251–252
not assuming up-front plans are right, 248
overview of, 247–248
up-front planning should be helpful not

excessive, 248–249
Platforms

lack of experience resulting in technical
debt, 140

testing in definition of done, 75
PMI (Project Management Institute), 237–239
Point inflation, 138, 412
Pollinators (Goldberg and Rubin), 217
Portfolio backlog

defined, 413

 Index 441

estimating, 121
inflow strategies, 275–280
outflow strategies, 280–283
portfolio planning and, 267, 269
in-process strategies, 283–285
release train approach (Leffingwell), 221

Portfolio planning
balancing product f low into/out of

portfolio backlog, 276–278
calculating cost of delays, 271–274
defined, 413
economic filter for go/no-go decision

making, 275–276
embracing emergent opportunities,

278–279
establishing WIP limits, 281–282
estimating for accuracy not precision,

274–275
focusing on idle work not idle workers, 281
managing economics of, 236
marginal economics applied to in-process

products, 283–285
in multilevel planning, 259
optimizing scheduling for lifecycle

profitability, 270–271
overview of, 267
participants in, 268
planning level details for, 258
process of, 268–270
product owner participating in, 168
small, frequent releases in, 279–280
strategies for in-process products, 283
strategies for inflow, 275
strategies for outflow, 280
strategies for sequence of products, 270
timing of, 267
waiting until entire team is in place, 282–283

Potentially shippable product increments (PSIs)
defined, 413
defining when sprint is complete or done,

74–78
as input to sprint review, 368–369
inspecting and adapting during sprint

review, 363
as outcome of iterative process, 2–3
planning release of features to customers,

307

release train approach (Leffingwell) and,
220, 222–223

sprint results, 25–26
Practices

activities. See Activities
artifacts. See Artifacts
defined, 413
roles. See Roles
rules. See Rules
in Scrum framework, 14

Pragmatism
no-goal-altering-change rule and, 72

Pragmatic Marketing Framework, 178–179
Precision

defined, 413
vs. accuracy in estimating, 125, 274–275

Prediction
balancing predictive work with adaptive

work, 43–44
just enough predictive planning, 300
plan-driven development compared with

agile development, 59
technical debt decreasing predictability,

143
timeboxing improving predictability, 64

Prediction and adaptation principle, in agile
development

accepting that you can’t get it right up
front, 38–39

adaptive, exploratory approach in, 39–40
balancing predictive work with adaptive

work, 43–44
handling cost of change, 40–43
keeping options open, 37–38
overview of, 37
pivoting and, 254–255

Predictive process. See Plan-driven
development

Prescriptive process. See Plan-driven
development

Principle of least astonishment
defined, 413
transparency of communication and, 206

Principles. See Agile principles
Prioritization

in product backlog, 103–104
sporadic attendance and, 372–373

442 Index

Prioritization (continued)
terminology choices for product backlog

sequences, 20
timeboxing enforcing, 62

Process authority, ScrumMaster as, 186–187
Process-centric development, 60
Process structure, 59
Product backlog

in agile development, 1–2
appropriate detail in, 101–102
conditions of satisfaction, 77
creating high-level list in product planning

process, 294–295
deciding which and how many to form,

112–113
defined, 413
definition of ready, 108–110
determining what is a product, 113–114
economics, 168
emergent nature of, 102
estimating, 121–122
grooming, 104–108, 369, 413
as input to sprint planning, 337
large products with hierarchical backlogs,

114–115
mapping to releases, 263
multiple teams with one product backlog,

115–116
one team with multiple product backlogs,

117–118
overview of, 99
PBIs in, 100–101
prioritization in, 103–104
product owner responsible for grooming,

169
product planning and, 259–260
release f low management, 110–111
release planning and, 320–321
representing technical debt, 155
in Scrum framework, 18–20
size estimates in, 102–103
sprint f low management, 111–112
sprint planning and, 17, 21–23

Product backlog items (PBIs)
appropriate detail, 101–102
creating high-level list in product planning

process, 294–295
deciding which work to start, 352

defined, 413
definition of ready, 109–110
emergent nature of, 102
estimating. See PBI estimation
grooming tasks related to, 104–105
mapping to sprints, 316–318
measuring velocity and, 133
organizing task work, 352–353
overview of, 100–101
parallel work and swarming, 350
as placeholders for requirements, 80–81
prioritizing, 103–104
representing technical debt, 155
selecting in sprint planning, 343–344
sign-offs and, 372
size estimates, 102–103
user stories adding detailed items, 315

Product development
benefits of Scrum for, 10
calculating duration from estimated size

and measure velocity, 119–120
defined, 413
economies of scale, 48
focusing on idle work not idle workers,

51–52
inventory management, 50
vs. product manufacturing, 32–33

Product manufacturing
comparing plan-driven development with

agile development, 59
economies of scale, 48
inventory management, 49–50
vs. product development, 32–33

Product owner
accountability of, 173
chief product owner, 183–184
collaborating with development team,

170–171
collaborating with stakeholders, 171
combining with other roles, 181–182
for commercial development, 177–179
for component development, 180–181
creating/verifying acceptance criteria,

169–170
a day in the life of, 174–176
deciding if work is done, 367
decision making by, 173
defined, 414

 Index 443

domain skills of, 171–172
function relative to estimation process, 123
grooming product backlog, 105–106, 169
for internal development, 176–177
managing economics, 167–168
for outsourced development, 180
overview of, 165–166
in overview of Scrum roles, 15–16
participant in product planning, 288–289
participant in product portfolio, 268
participant in requirements conversation, 84
participant in sprint execution, 348
participant in sprint planning, 335
participant in sprint retrospective, 377
participant in sprint review, 364–365
people skills of, 172–173
planning functions of, 168–169
principal responsibilities of, 166
proxy product owner, 183
rules of Planning Poker, 132
in sprint planning, 21–22
team approach to, 182–183
understanding value of technical stories,

90–91
who should fill this role, 176

Product owner proxy, 183, 414
Product planning

creating product backlog, 294–295
a day in the life of product owner, 175
defined, 414
defining product roadmap, 295–297
economic filter for go/no-go decision

making, 275–276
economic sensibility in, 299–300
incremental/provisional funding in,

304–305
learning fast and pivoting as necessary, 305
in multilevel planning, 259
new product example, 290–291
other types of work in, 298–299
overview of, 287
participants in, 288–289
planning level details for, 258
process of, 290
product backlog and, 259–260
product owner participating in, 168–169
product roadmap and, 260–261
product vision, 259, 291–294

short time horizon as focus of, 302
speed and efficiency of, 302–303
targeting realistic confidence threshold,

300–302
timing of, 287–288
validated learning in, 303–304

Product roadmap
defining, 295–297
definition of, 414
product planning and, 260–261
release planning and, 262–263

Product vision. See Vision
Productivity, multiple projects and, 207
Products

atrophy of appeal due to technical debt,
143

defined, 413
determining what is a product, 113–114
development team responsible to inspect

and adapt, 197
large products with hierarchical backlogs,

114–115
not repaying technical debt for products

nearing end of life, 157
not repaying technical debt for products

with short life, 157–158
planning new. See Product planning
portfolio of new. See Portfolio planning

Program backlog, 221
Progress

communicating in fixed-date release,
329–330

communicating in fixed-scope release, 327
comparing plan-driven development with

agile development, 60
of sprint execution, 356
timeboxing demonstrating, 62–63

Progress principle, in agile development
adapting to real-time information and

replanning based on, 54
measuring progress by validating working

assets, 54–55
overview of, 54
value-centric delivery in, 55

Progressive refinement strategy
applying to requirements, 82
defined, 414
level of detail, 86

444 Index

Project chartering, 299, 414. See also Product
planning

Project inception, 299. See also Product
planning

Project initiation, 299. See also Product
planning

Project Management Institute (PMI), 237–239
Project managers. See also Managers

responsibilities of, 237–239
when to retain separate project manager

role, 239–243
Project Retrospectives (Kerth), 375, 379
Proof of concept, 93
Prototypes

knowledge-acquisition user stories, 93
not repaying technical debt for throwaway

prototypes, 157
PSIs. See Potentially shippable product

increments (PSIs)

Q
Quality

building in to development process, 56–57
comparing plan-driven development with

agile development, 60
influenced by long-lived teams, 210
overtime and, 137
pressure to meet a deadline affects, 144–148
reduced due to working on too many items

in parallel, 350–351
release constraints, 311
team diversity leads to, 201
traditional project management

responsibility, 238
variability due to constraints, 313–314

Questioning ability, ScrumMaster skills,
188–189

Queue
defined, 414
impact of utilization on queue size (delay),

52–53
portfolio backlog and, 280

R
Range of velocity, calculating, 134–135
Real-time information, adapting to and

replanning based on, 54

Reckless debt (Fowler), 140
Refactoring code

defined, 414
as means of paying down technical debt,

141
use of good practices prevents accrual of

technical debt, 149
Reinertsen, Donald G.

on batch-size issues, 48–49
on cost of delay, 53
on lifecycle profits, 270

Relative size measures
in cost evaluation, 20
defined, 415
vs. absolute sizes in estimation, 125–128

Release goal
communicating progress using burndown

chart, 327–328
communicating progress using burnup

chart, 359
defined, 415
economics of, 167
grooming product backlog and, 315
product roadmap and, 296

Release planning
calculating costs in, 325–326
communicating progress in fixed-date

release, 329–330
communicating progress in fixed-scope

release, 327–329
constraints on release, 311
a day in the life of product owner, 175
defined, 415
defining product roadmap and, 296
emphasis on small, frequent releases,

252–254
fixed date constraint, 313–314
fixed-date release planning, 318–323
fixed everything approach, 311–312
fixed scope and date constraints, 312–313
fixed scope constraint, 313
fixed-scope release planning, 323–325
flow management and, 110–111
grooming product backlog, 315
initial grooming during, 107
managing economics of, 167–168
in multilevel planning, 261–263
overview of, 307–308
participants in, 308

 Index 445

planning level details for, 258
process of, 309–311
refining MRFs, 316
sprint mapping, 316–318
technical debt and, 140
timing of, 308–309
updated plan as output of sprint review,

369
updating constraints, 314
variable quality constraint, 313–314
velocity and, 133

Release train (Leffingwell)
coordinating multiple teams using,

220–223
defined, 415

Releases
defined, 415
small, frequent releases in portfolio

planning, 279–280
Replanning, as focus of planning rather than

conformance, 249–251
Reports, managers monitoring, 236–237
Requirements

card format for user stories, 83–84
confirmation information in user stories,

85–86
conversations facilitating shared

understanding, 81–82
conversations in development of user

stories, 84–85
estimatable criteria for user stories, 91–92
gathering user stories, 95
independent criteria for user stories, 88–89
INVEST criteria applied to user stories, 88
knowledge-acquisition user stories, 93–95
level of detail in user stories, 86–88
negotiable criteria for user stories, 89–90
nonfunctional, 93
overview of, 79–80
placeholders for, 80–81
progressive refinement of, 82
sized appropriately criteria for user stories,

92
story mapping technique and, 96–98
testable criteria for user stories, 92
user stories and, 83
valuable criteria for user stories, 90–91
workshop for writing user stories, 95–96

Resource managers, 229. See also Managers

Responsibilities, of development team,
groom the product backlog, 197
inspect and adapt each day, 197
inspect and adapt the product and process,

197
perform sprint execution, 196
plan the sprint, 197

Responsibilities, of product owner
collaborating with development team,

170–171
collaborating with stakeholders, 171
creating/verifying acceptance criteria,

169–170
grooming product backlog, 169
managing economics, 167–168
participating in planning, 168–169

Responsibilities, of ScrumMaster,
change agent, 187
coach, 185
impediment remover, 187
interference shield, 187
process authority, 186–187
servant leader, 186

Retrospectives, 375. See also Sprint
retrospective

Return on investment (ROI)
cost of delays and, 271–272
responsibility of product owner for

ensuring, 168
Scrum benefits, 6
short duration sprints improving, 65
small, frequent releases improving, 252,

254
Ries, Eric, 44, 157, 236, 254–255
Risk

associated with setting the confidence
threshold, 301

assumptions and, 45
defined, 415
of fixed-price contracts, 180
of misinterpretation using ideal days,

128–129
small batch sizes reduce, 49
traditional project management

responsibility, 238
Roadmap. See Product roadmap
ROI. See Return on investment (ROI)
Role-specific teams, compared with cross-

functional teams, 195–196

446 Index

Roles
combining product owner with other,

181–182
combining ScrumMaster with other,

192–193
defined, 415
development team, 16
overview of, 14–15
product owner, 15–16
ScrumMaster, 16

Roles (personas), in user stories, 96
Rolling lookup-ahead planning (Cohn), 318
Rules

allocate-up-to-ten-percent-capacity-for-
grooming rule, 106

avoid-technical-debt-specific-sprints rule,
159

Boy Scout rule, 158–159, 403
consistent-duration sprints rule, 67
defined, 415
development-team-should-be-between-

five-and-nine-people rule, 206
development-team-should-be-long-lived

rule, 210
involve-all-team-members-in-story-

writing rule, 294
no-goal-altering-change rule, 20, 72
one-hour-per-sprint-week rule, 367
one-product-one-product-backlog rule,

114–116
people-who-do-the-work-provide-the-

estimates rule, 123
Scrum practices, 14
start-only-what-you-can-finish rule, 344
tasks-should-be-no-more-than-eight-

hours rule, 338
teams-should-handle-their-own-

coordination rule, 239–240

S
Safety, setting atmosphere for sprint

retrospective, 382
Scale

in assigning estimates, 130
multiple small teams vs. single large team,

218
release train, 220–223
scrum-of-scrums, 218–220

Schedules
attendance issues and, 392
benefit of small batch sizes on, 49
predictable Scrum activities, 68
for sprint review, 366–367

Scheduling strategies, portfolio planning
calculating cost of delays, 271–274
estimating for accuracy not precision,

274–275
optimizing for lifecycle profitability,

270–271
overview of, 270

Schwaber, Ken, xxix–xxx, 3
Scope constraint

fixed date approach, 313–314
fixed everything approach, 311–312
fixed scope and date approach, 312–313
fixed scope approach, 313
in release planning, 311

Scrum framework. See Framework, for Scrum
“The Scrum Guide” (Sutherland and

Schwaber), xxix–xxx
Scrum introduction

benefits to Genomica, 4–5
benefits to organizations, 5–7
Cynefin framework and, 6–10
framework overview, 13–14
origins of, 3
what it is, 1–3

Scrum of scrums (SoS)
for coordinating multiple teams, 206,

218–220
defined, 416

Scrum team
defined, 416
development team. See Development team
product owner role. See Product owner
roles of, 14–15
ScrumMaster. See ScrumMaster

ScrumMaster
combining with other roles, 192–193
a day in the life of, 190–191
defined, 416
facilitating daily scrum, 24
facilitating sprint review, 368
full vs. part time for, 192
function relative to estimation process, 123
grooming product backlog, 105–106
overview of, 185

 Index 447

in overview of Scrum roles, 16
participant in product planning, 288–289
participant in sprint execution, 348
participant in sprint planning, 335–336
participant in sprint retrospective, 377
participant in sprint review, 364–365
responsibilities of, 185–187
scrum of scrums and, 219
skills of, 188–190
in sprint planning, 21–22
sprint retrospective issues, 393
who should fill this role, 191–192

Scrummerfall, 34, 421
Self-fulfilling prophecy, 41–42
Self-organization

defined, 416
by development team, 198–200
sprint execution, 348
undermining, 231

Sequential development. See Plan-driven
development

Servant leader
defined, 416
ScrumMaster as servant leader of Scrum

team, 186
Servicing technical debt

Boy Scout rule for, 158–159
incrementally, 159
overview of, 155–156
paying high-interest debt first, 160
reasons for not repaying, 157–158
while performing customer-valuable work,

160–162
Shared context

creating for sprint retrospective, 382–384
emotions seismograph as aid in creating,

384–385
event timeline as aid in creating, 384
mining for insights, 385

Shippable product. See Potentially shippable
product increments (PSIs)

Sign-offs, sprint review issues, 372
Silent grouping exercise

for clustering insights, 386
defined, 416

Simple domain
in Cynefin framework, 6–8
defined, 417

Single-piece f low, 48, 417

Six Sigma, 8
Size

in cost evaluation related to product
backlog, 20

estimates, 102–103
Skills

inputs to sprint planning, 338
managers role in development of

competence, 231–232
of product owner, 171–173
of ScrumMaster, 188–190
technical practices for task performance,

355–356
Small criteria, INVEST, 92
Small teams

favored for Scrum development, 206
high-bandwidth communication and, 205

SMEs (Subject matter experts), 169
Software development, issues related to, 5
Solutions

benefits of Scrum for, 4
defined, 417
faster and better, 201
innovative, 32

Specialists, on development team, 202
Specification by example, 85, 417
Spikes, knowledge-acquisition user stories, 93
Sprint backlog

defined, 417
estimating, 122
as input to sprint review, 368–369
sprint planning and, 264

Sprint burndown chart, 357–359
Sprint burnup chart, 359–360
Sprint demo, 368, 370, 417
Sprint execution

communicating progress of, 356
daily scrum and, 354
deciding which work to start, 352
determining which work needs to be done,

353–354
flow management and, 111–112, 349–350
organizing task work, 352–353
overview of, 23, 347
parallel work and swarming, 350–352
participants in, 348
performed by development team, 196–197
planning, 349
process of, 348–349

448 Index

Sprint execution (continued)
sprint burndown chart and, 357–359
sprint burnup chart and, 359–360
task board and, 356–357
technical practices for task performance,

355–356
timing of, 347
who does the work, 354

Sprint goal
defined, 417
inputs to sprint planning, 338
inputs to sprint review, 368–369
maintaining despite changes, 69–73
refining, 346
selecting product backlog items that align

with, 343–344
setting in planning process, 21

Sprint maps, in release planning, 310, 316–318
Sprint planning

acquiring confidence, 344–346
a day in the life of product owner, 175
defined, 417
determining capacity in, 340–343
finalizing commitment, 346
managing economics of, 168
in multilevel planning, 263
one-part approach to, 339–340
overview of, 21–23, 335
participants in, 335–336
planning level details for, 258
process of, 336–338
product owner participating in, 169
refining sprint goal, 346
responsibilities of development team, 197
selecting product backlog items, 343–344
terminology choices for sprint planning

outcomes, 17–18
timing of, 335
two-part approach to, 338–339

Sprint results. See Potentially shippable
product increments (PSIs)

Sprint retrospective
approach to, 380–382
closing the retrospective, 390
creating shared context for, 382–384
deciding among actions, 389–390
defined, 417

defining focus of, 378–379
determining actions, 387–388
emotions seismograph in, 384–385
event timeline in, 384
follow through on, 391–392
gathering objective data, 379
identifying insights, 385–387
insight backlog, 390
issues related to, 392–393
overview of, 27–28, 375–377
participants in, 377–378
prework needed for, 378
responsibilities of development team, 197
selecting among insights, 388–389
selecting exercises for use in, 379
setting atmosphere for, 382
structuring, 380

Sprint review
adapting based on, 371
approach to, 368–369
attendance issues, 372–373
confirming sprint work is done, 367–368
defined, 418
demonstration aspect of, 370
determining facilitator for, 368
determining who to invite, 366
discussions in, 371
for large development projects, 373
overview of, 26–27, 363–364
participants in, 364–365
preparing for demonstration, 368
prework needed for, 365–366
responsibilities of development team, 197
scheduling, 366–367
sign-offs, 372
summarization of sprint goal and sprint

results, 369–370
when grooming occurs and, 108

Sprintable stories
defined, 417
size of user stories and, 87
story mapping technique and, 96

Sprints
abnormal termination of, 72–73
consistent duration of, 67–68
daily scrum and, 23–25
defined, 417

 Index 449

defining when complete or done, 74–78
iterative and incremental approach to

development, 34
maintaining sprint goals despite changes,

69–73
organizing product planning into, 298
overview of, 20–21, 61–62
in Scrum framework, 17
short duration of, 64–67
timeboxing, 62–64

Staats, Bradley R., 210
Stakeholder value

areas of, 292–294
defined, 418

Stakeholders
accountability of product owner to, 173
defined, 418
defining product backlog, 18
getting feedback in agile development, 2
participant in grooming product backlog,

105–106
participant in product planning, 288–289
participant in portfolio planning, 268
participant in release planning, 308
as participant in requirements

conversation, 84
participant in sprint retrospective, 377
participant in sprint review, 364–365
product owner collaborating with, 166, 171

Start/end dates. See Timeboxing
Start-only-what-you-can-finish rule, 344
Stories. See User stories
Story mapping technique (Patton), 96–98, 418
Story points

defined, 418
measuring capacity in, 342
measuring magnitude of PBI, 128
Planning Poker, 129-133
as relative size measures, 20

Strategic filters
defined, 418
economic filters, 275–276, 406

Strategic technical debt, 140, 418
Strategy planning, 257
Subject matter experts (SMEs), 169
Subjective data, communicating in sprint

retrospective, 383
Subsystem teams, 214. See also Component

teams

Succeeding with Agile (Cohn), xxv, 397
Summarization aspect, of sprint review,

369–370
Sustainable pace

defined, 418
of development team in performance of

work, 56, 208–209
Sutherland, Jeff, xxix–xxx, 3
Swarming

defined, 418
sprint execution and, 351–352
T-shaped skills, 201–203

Synchronization
defined, 418
of multiple teams, 220, 222

System
system-level constraints expressed via

nonfunctional requirements, 93
system-level focus in sprint retrospective,

385
testing in definition of done, 75

Systems perspective, of managers, 235

T
T-shaped skills

choosing who does the work and, 354
defined, 420
diversity of development team and,

201–203
finding balance in utilization of, 351

Tacit knowledge
defined, 419
of technical debt, 154

Takeuchi, Hirotaka, 3
Targeted technical debt

defined, 419
servicing, 155

Task board
for communicating sprint execution

progress, 356–357
defined, 419

Tasks
defined, 419
during sprint planning, 22
estimating sprint backlog, 122
organizing task work, 352–353
technical practices for performance of,

355–356

450 Index

TDD (test-driven development), 378, 419–420
Team structures

coordinating multiple teams using release
train approach (Leffingwell), 220–223

coordinating multiple teams using scrum
of scrums, 218–220

feature teams vs. component teams,
213–218

multiple team coordination, 218
overview of, 213

Teams
compared with groups, 209–210
coordinating multiple, 218–220
cross-functional. See Cross-functional

teams
defined, 419
development. See Development team
product owner as, 182–183
swarming, 351
unit of capacity, 233, 282
use complete and engaged, 282–283

Teams, fashioning
changing team composition, 229
defining team boundaries, 227
empowering teams, 230–231
forming teams, 228–229
overview of, 226
providing team goals, 228

Teams, nurturing
developing team member competence,

231–232
energizing team members, 231
maintaining team integrity, 233
providing leadership in functional areas,

232–233
Technical debt

Boy Scout rule for servicing, 158–159
causes of, 144–148
consequences of, 141–144
defined, 419
definition of done and, 76
economics of, 150–152
making visible at business level, 153–154
making visible at technical level, 154–155
making visible with balance sheet, 153-154
managing, 148
managing accrual of, 149–150

overview of, 139–141
reasons for not repaying, 157–158
repaying high-interest debt first, 160
repaying incrementally, 159
repaying while performing customer-

valuable work, 160–162
servicing, 155–156
variable quality and, 314

Technical knowledge, ScrumMaster skills, 188
Technical practices

defined, 419
for task performance, 355–356
use of good practices prevents accrual of

technical debt, 149
Technical stories

defined, 419
value of, 90

Technical work, as product backlog item,
100–101

Test-driven development (TDD), 378, 419–420
Test-first development, 353, 420
Testable criteria, INVEST, 92
Testing

automated testing, 355–356
components, 46–47
excessive manual testing resulting in

technical debt, 139
myth that reduced testing can accelerate

velocity, 145–147
quality built-in to development process,

56–57
release train approach (Leffingwell) and, 222
types of tests, 75

Themes
defined, 420
story mapping technique and, 96
user stories and, 87–88

Time-management
act quickly, 302–303
focusing on short time horizon in product

planning, 302
timeboxing for, 62

Timeboxing
benefits of, 62–64
defined, 420
sprint retrospective and, 379
start and end dates, 20–21

 Index 451

Timeline, creating event timeline for sprint
retrospective, 384

Timing
of portfolio planning, 267
of product planning, 287–288
of release planning, 308–309
of sprint execution, 347
of sprint planning, 335

Traditional development process. See Plan-
driven development

Training
a day in the life of ScrumMaster, 190
managers role in development of

competence, 231–232
Transparency

defined, 420
of development team, 205–206
leveraging variability, 35–36
of ScrumMaster, 189–190

Trust, managers role in establishing, 231
Two-part approach, to sprint planning,

338–339

U
Unavoidable technical debt, 140, 420
Uncertainty. See also Variability

comparing plan-driven development with
agile development, 59

flow management and, 110
reducing, 36–37
type of, 36

Underutilization, of capacity, 351
Unintentional debt (McConnell), 140
Unit tests, 75
Units, for estimating product backlog items

ideal days, 128–129
story points, 128

Unknown unknowns
defined, 420
uncertainty and, 37

Unnecessary formality. See Formality
Unpredictable tipping point, characteristics of

technical debt, 142
Up-front plans

accepting that you can’t get it right up
front, 38–39

focus on adapting and replanning rather
than conforming, 249–251

focus on making helpful not excessive,
248–249

just enough predictive planning, 300
not assuming they are right, 248

User role
defined, 420
user stories and, 83, 96

User stories. See also Requirements
benefits of, 79
card format for, 83–84
confirmation information in, 85–86
conversations in development of, 84–85
defined, 421
detailed product backlog items resulting

from, 315, 320
estimable criteria for, 91–92
gathering, 95
independent criteria for, 88–89
INVEST criteria applied to, 88
knowledge-acquisition stories, 93–95
level of detail in, 86–88
negotiable criteria for, 89–90
nonfunctional requirements expressed

via, 93
overview of, 83
for representing product backlog items,

294–295
sized appropriately criteria for, 92
story mapping techniques, 96–98
testable criteria for, 92
valuable criteria for, 90–91
workshop for writing, 95–96

Utilization, relationship to queue size (delay),
52

V
Validated learning

concurrent learning loops in, 45–46
defined, 421
organizing workflow for fast feedback,

46–47
overview of, 44–45
product planning and, 303–304
validating important assumptions, 45

452 Index

Validation, measuring progress by asset
validation, 54–55

Valuable criteria, INVEST, 90–91
Value-centric delivery, 55, 60
Value-creation flow, managers role in

managing economics, 236
monitoring measures and reports, 236–237
systems perspective of, 235

Value-delivery-focused thinking, 353
Values

defined, 421
in Scrum framework, 13

Variability
defined, 421
embracing helpful variability, 32–33
inspection, adaptation, and transparency,

35–36
iterative and incremental approach to

development, 33–35
overview of, 32
reducing uncertainty, 36–37

Velocity, of work
affecting, 135–137
calculating range of, 134–135
decreasing as technical debt increases, 147
defined, 421
fixed-scope-release burndown chart, 327
forecasting, 135
inputs to sprint planning, 337
misuse of, 137–138
myth that reduced testing can accelerate

velocity, 145–147
overview of, 119–120
pressure to accelerate resulting in technical

debt, 145
technical debt increasing time to delivery,

142
using predicted velocity to check if

commitment is realistic, 344–345
what it is, 133–134

Vision
basing on areas of stakeholder value,

293–294

creating shared, 291–292
defined, 414
formats for, 292–293
product planning (envisioning) and, 259

W
Waste

defined, 421
innovation waste, 90

Waterfall development. See also Plan-driven
development

defined, 421
disadvantage of applying to sprint

execution, 351–352
error of overlaying Scrum on, 34
Scrum compared with, 5
types of plan-driven approaches, 29

WaterScrum, 34, 422
Weighted shortest job first (WSJF)

defined, 422
scheduling strategies and, 271

Won’t-have features
defined, 422
release f low management and, 110–111

Work in process (WIP)
batch sizes in, 48–49
comparing plan-driven development with

agile development, 60
considering cost of delays, 52–54
defined, 422
establishing WIP limits, 281–282
inventory management, 49–50
Kanban and, 10
overview of, 48
participants in sprint execution, 51–52
timeboxing setting limit on, 62

Workflow, organizing for fast feedback,
46–47

Workshop, for writing user stories, 95–96
WSJF (Weighted shortest job first)

defined, 422
scheduling strategies and, 271

	Contents
	List of Figures
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 2 Scrum Framework
	Overview
	Scrum Roles
	Scrum Activities and Artifacts
	Closing

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

